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It is argued that “quantum effects” are those that necessarily depend on hypothetical input unique to quantum me-
chanics. In effect, they must be a consequence of the non-commutivity of the operators spanning phase space; i.e.,
Heisenberg uncertainty (HU). This fact implies that all effect described by the group SU � 2 � , which is isomorphic
to the group O � 3 � , cannot be quantum effects, as their non-commutivity is due to geometry, not HU. The conse-
quences of this deduction are applied to the “quantum eraser,” effect. The conclusion is that data from ‘quantum
eraser’ experiments can be explained with Malus’ Law, i.e., a non quantum principle, and that information is just
concealed, not erased.

I. PRELIMINARIES

The problem addressed here has a certain formalistic char-
acter benefiting, possibly, from a general, abstract clarifica-
tion. Thus, first, I shall delineate this aspect based on an anal-
ogy with the foundations of geometry as a logical, mathemat-
ical structure.

To begin, recall that a logical structure has two categories of
inputs: primitive objects and axioms. Primitive objects cannot
be defined within the structure itself; they can only be under-
stood from experience external to the final logical construct; in
geometry, for example, they are the intuitive notions of a point
and a line. Axioms also cannot be extracted from the struc-
ture, but must be input. They consist of statements specifying
the fundamental relationships to be attributed to the primitive
objects. For geometry in its most general and extensive form
there are four such axioms. For Euclidean geometry an addi-
tional axiom is added, namely, that there is only one parallel
to any line through a point not on the line.

Clearly, this additional axiom restricts the structure by re-
moving what may be seen as freedom of choice in certain fea-
tures. If one is thinking of building up a logical structure from
the ground up through additions to the axiom set, then such
an additional stipulation might be seen as an advancement.
On the other hand, if one is striving to encompass more struc-
tural possibilities, then the additional axiom might be seen as
a step backwards. With regard to geometry, because the fea-
tures of Euclidian geometry are closer to common experience,
the historical development of, and generally the psychological
disposition to, non-Euclidean geometry is regarded typically
as a progressive endeavour, when in terms of structure it was
actually the discovery of more primitive (i.e, less constrained)
structural features. The more sophisticated attitude is to con-
sider Euclidean geometry the limit of non Euclidean geome-
try when certain fundamental parameters, e.g., the radius of
curvature, go to some limit, infinity, say. In any case, any the-
orem not dependant on the additional axiom is properly not a
theorem in Euclidean geometry.

The development of Quantum Mechanics (QM) from pre-
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quantum mechanics is a very close historical and logical par-
allel to the development of geometry. Here the essential ad-
ditional axiomatic input, taking the structure from less to
more structural confinement, is a statement on the commu-
tivity of Hamiltonian canonically conjugate variables. That
is, whereas these variables may be non-commutative in the
less restricted structure (QM), they are mandated to be com-
mutative in the more restricted structure (Classical Mechan-
ics, or pre-quantum mechanics—which from the hierarchical,
but not historical, point of view should be thought of as post-
quantum). Again, only structure not admitting the axiomatic
input mandating commutative canonical variables, is properly
described as ‘quantum.’

So much for abstract generalities; now we turn to specifics.

II. PRE- AND POST-QUANTUM (NON)COMMUTIVITY

Non-commutivity in various mathematical arenas arises is
several different ways. Within the mathematics used for me-
chanics, there appear to be three distinct “causes.” The first
of these is that due to the non-commutivity of rotations on a
sphere. The patterns of this feature are encoded in the group
O � 3 � . Since the primitive objects being described in mechan-
ics, point masses, move about in Euclidean 3-space, agglom-
erations of such point masses (e.g., solid bodies) can rotate,
so that this non-commutative feature must arise somewhere
in a theory of mechanics. Further, it is known that non par-
allel Lorentz boosts do not commute. Thus, a theory of me-
chanics taking electrodynamics with, loosely speaking, light-
interaction into account, must also exhibit this second non-
commutative property somewhere.

But neither of these causes pertain to the distinguishing
feature between pre- and post-quantisation, namely, non-
commutivity of canonically conjugate variables, which was
historically introduced, essentially as an intuitive leap in the
spirit of ‘trial-and-error,’ but with much motivational imagery
and argumentation on the basis of uncertainty, imprecision
and so on. In the literature, these motivation factors have been
concentrated largely into statements known as “Heisenberg’s
Uncertainty Principle” and “Bohr’s Complementarity.”

While there are ideas in the literature suggesting a possi-
ble deep relationship among pairs (maybe even all at once) of
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these three “causes” of non-commutivity 1(1), at present such
a connection is unaccepted, incompletely worked out, and
mostly regarded as the result of ill understood coincidences.
For the purposes of present analysis, it is taken that whatever
structural similarities these three seem to have, they are dis-
tinct in terms of their fundamental causes and significance for
theories of mechanics.

A particular illustration relevant to what follows of this situ-
ation with respect to QM, is the appearance of the group struc-
ture SU � 2 � . It is at the core of vast amounts of cotemporary
analysis usually involving what has become known as “q-bit”
space, for example. This structure is widely thought to be an
essential and unique feature available for exotic new applica-
tions of QM in computation, communication, etc.

However, it is just a straightforward mathematical fact from
Group Theory, that the group SU � 2 � is homeomorphic to the
group O � 3 � . The latter group encodes the structure of rota-
tions on a sphere so that obviously the non-commutivity in-
volved is just a geometric effect in absolutely no way derived
from the distinguishing axiomatic input into QM. Further, be-
cause of, or better put: in accord with, the homeomorphism
between these groups, any non-commutivity in q-bit space,
having nothing to do with pairs of canonical variables, also
must be exclusively geometrical, not quantum, in nature.

So much for theory, we now turn to an application.

III. QUANTUM ERASER EXPERIMENTS

Here focus is directed to two particularly conceptually
clean optical experiments that are credited with exhibiting the
so-called ‘quantum eraser’ effect.(2; 3) The crux of this effect
is considered a demonstration of quantum complementarity.

In both cases a signal and idler is generated by parametric
down conversion (PDC) in a crystal; see: Fig. 1.

The signal is directed to a Young double slit setup such that
the crystal axis and slits are parallel. The idler is separately
detected with or without a polariser. The tactic is to mark the
sub signals passing through slits so as to obtain knowledge of
which slit a “photon” passed through. This is done by placing
orthogonal polarisers at � 45 � with respect to the slits’ axis
before each slit respectively. Thus, if without the polarisers a
diffraction pattern was seen, with them it vanishes. This dif-
ference is said to represent “erasure of information.” But, if
the input signal sent through the Young setup was generated
by PDC, then it is possible to examine coincidences between
the signal passing through the slits with the so-called idler sig-
nal on an independent optical path passing through a separate
polariser. Since the signal and idler from PDC are strictly
(anti)correlated (depending on crystal type), these correlations
can be used to filter the data stream into distinct subsets.

1 For example, see (1) for analysis exploiting a formal connection between
SU � 2 � and the Lorentz group. It is still unclear to this writer if this is just a
geometical congruence or or the consequece of fundamental physics.

Without going into the currently favoured ‘quantum’ inter-
pretation,2 which I dispute in any case, the data taken in such
experiments consists of three sets, one without signal-idler co-
incidences, and two more when the idler is first passed through
a polariser, either parallel or orthogonal to the axis of the crys-
tal; see: Fig. 2.

The purely geometrical explanation for the nature of the
data sets is depicted in Fig. 3. There it is seen that the sig-
nature phenomenon for ‘quantum erasing,’ namely the extrac-
tion of a subset of data exhibiting either fringe or antifringe
patterns, is just a consequence of what can be called “coinci-
dence filtering.” In no case is any data erased or restored in
retrospect—as is sometimes claimed on the basis of the cus-
tomary ‘quantum’ analysis of these experiments.(5)

IV. IMPLICATIONS

In short, the conclusion from these considerations is that
the signature effect seen in these experiments, namely that the
fringe and anti-fringe patterns combine to from a fringe-free
total, has no uniquely ‘quantum’ interpretation; it is a simple
consequence of Malus’ Law and geometry. Further, there is
no erasure of information; at most, it can be said only that
information is concealed or encrypted; and, thereafter it can be
revealed or decrypted using ‘coincidence filtering.’ From the
vantage of these arguments, it is not a simple matter of taste
or interpretation; the essence of these conclusions is largely a
question of the consistency of the mathematics involved, and
then of the syntax of the language used to discuss them.

This has, as pointed out by Scully(6), among others, im-
mediate consequences for the analysis of any other quantum
phenomena described using the group SU � 2 � .

The most celebrated example is Bohm’s version of analy-
sis of Einstein-Podolsky-Rosen (EPR) correlations. The orig-
inal Gedanken-experiment proposed by EPR was set in phase
space where canonical variables span the space and can, there-
fore, be non commutative for dynamical reasons, i.e., by cause
of the axiomatic foundations of QM. However, because of
practical limitations, an experiment as EPR proposed it, is not
feasible in phase space, Bohm suggested a change of venue,
to q-bit space. This space is known to be adequate for describ-
ing polarisation of transverse electromagnetic waves, as was
discovered first by Stokes in 1852(7), nearly 50 years before
the need for QM was appreciated. Again, q-bit space struc-
ture is encoded in SU � 2 � and is fundamentally not quantum
in character, so that all analysis depending on it is also not
quantum, including all analysis formulated in the tradition of
Bell on EPR correlations. In other words, Bohm’s modifica-
tion was not legitimate because he did not distinguish between
the various causes of non commutivity.

With regard to Bell’s analysis this conclusion seems to be
in conflict with a ‘proven theorem.’ However, while the math-

2 See:(4) for a more extensive discussion of the subtleties of the nowadays
conventional understanding of this effect and of ancillary issues of inter-
pretation.
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Figure 1 The experimental setups to observe the ‘quantum erasure’ effect. The one depicted on the left, by Walborn et al., uses polarisers
(or quarter wave plates) to distinguish the signals passing through each slit. If no polarisers are present, then the usual diffraction pattern is
observed. If orthogonal polarisers are placed before the slits, no diffraction pattern appears. But, when a polariser is placed before the idler
signal and coincidences as a function of displacement are counted, they show either a fringe or anti fringe diffraction pattern. The setup on the
right, by Kim et al., uses beam splitters to randomly select the various subsets.
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Figure 2 The fringe pattern depicted on the left was observed in the coincidences between signal and idler when the polariser in the idler beam
is vertical. The middle pattern occurs when the this polariser is horizontal. The pattern on the right is the sum of the two and is seen when no
coincidence filtering is done.

ematical manipulations employed by Bell, and subsequently
others in various elaborations of his argument, are, as algebra
alone, correct, their physical significance cannot be a matter
of formal logic. This follows from the fact that no physics ar-
gument can be a ‘theorem,’ i.e., a syllogism based ultimately
on given primitive elements and an axiom set because, inter
alia, the axioms would be the fundamental theories that are
still largely unknown! Moreover, there is also a fatal misstep.

The exact misconstrual in Bell’s theorem, first discussed
by Jaynes(8), occurs in the encodification of the concept of
non-locality. He pointed out that Bell wrote for the joint prob-
ability of the EPR correlations

P � a � b � �
�

dλρ � λ � A � a � λ � B � b � λ ��� (1)

whereas he should have written

P � a � b � �
�

dλρ � λ � A � a � b � λ � B � b � λ ��� (2)

This is most easily seen if the functions A � a � λ � and B � b � λ �
are identified as ‘expectation functions.’ i.e., as the integrands
for calculating ‘expectation values,’ or

�
a � �

�
D

dλA � a � λ � ρ � λ ��� (3)

where D is the complete domain of whatever variables specify
the outcomes. From probability theory it is known that such
‘expectation functions’ have the generic form xρ � x � so that�

x � �	� dxxρ � x � where ρ � x � is the probability distribution
of the variable x. Now, for calculating correlations in situa-
tions where there are two or more probabilistically distributed
variables, such probability distributions must obey Bayes’ for-
mula, namely, the joint distribution ρ � x � y � in terms of the
independent probabilities is given by ρ � x � y � � ρ � x � y � ρ � x � ,
where ρ � x � y � is a conditional probability. When taking this
structure into account, it is seen that the correct version of
Eq. (1) is of the form of Eq. (2), which precludes derivation
of any form of a “Bell inequality.” In effect, Bell misencoded
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Figure 3 This digram depicts the geometrical relationships among the various components of the output signals from PDC after having been
directed through polarisers oriented as described in the text. If the crystal is chosen so that the signal and idler are anticorrelated, then the total
data distribution seen on the right in Fig. 2 can be resolved as follows. Coincidences with horizontal idler signal (row 1) result from pairs
for which the signal was vertical. This implies that the vertical components of the polariser outputs add while the horizontal cancel, thereby
selecting the points which exhibit a fringe pattern. If the idler polariser is vertical (row 2), then complimentary situation selects the antifringe
subset. From these relationships it is evident that the observed phenomena labelled ‘quantum erasing,’ is, in fact, just ‘coincidence filtering’
on the basis of geometrical resolution of the PDC outputs after passing the various polariser setting regimes.

‘locality’ as statistical independence, contrary to the initial as-
sumption of correlated outcomes.

In other words, this latter form explicitely incorporates con-
ditional probabilities which need to be employed to encode
the correlations between the two EPR daughter outcomes—
the experiments actually consist of measuring just such corre-
lations; if correlation is attributed exclusively to hidden vari-
ables, without manifestation in terms of measurable quanti-
ties, then no experiment is possible. A direct consequence
of correcting this misstep is that the derivation of all ver-
sions of ‘Bell inequalities’ becomes impossible. The conse-
quences of this have been extensively analysed by this writer
elsewhere(9–13), to include even a data point by data point
simulation free of non local interaction, and so will not be
elaborated here. The crucial point for the analysis herein is
simply that the belief that Bell’s “theorem” is in conflict with
conclusions drawn above on the basis of the non quantum
character of the structure of the group SU � 2 � , is fully dis-
putable.

Dedication

This work is dedicated to the memory of Willis Lamb, for
his judgement that coherent philosophy must accompany co-
herent physics, as exemplified in his publication with Marlon
Scully providing a semiclassical model for the photoelectric
effect.(14)

Note: Preprints of references (4; 9–13) can be down-
loaded from the writer’s web-page: http://www.nonloco-
physics.000freehosting.com
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