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Itis generally accepted that the equation
my =W/c?,
which relates the enerdly/ with its masany, is a consequence &iNSTEIN's theory. The author shows that this
equation may be obtained froMAXWELL 's equations without invoking the principle of relativity. The mass of
a moving particle, whose mass when at reshisbecomes
m=m +T/c.

From this equation, combined with the principle of conservation of en@xgy\cK's expression for the kinetic
energy

__me 2
V1-12/c2 e
is obtained.

In a conservative field of force, the relativistic equation of motion
- d u
f=m
dt \/1—u?/c?
cannot be applied. Instead, the principle of conservation of energy
d(T+Ep) =0,
leads to the following equations of motion for electric, magnetic and gravitational fields respectively:
du
—Q(L- /)00 =m
_ . m  dd
V1@ dt’

—(1-w?/A)¥0v = %.

Q(uxB)

It follows from the last of these equations, that gravitational nmgand inertial mass mof a moving particle
are related by

my = GY2(1—-?/c?)?m.
Consequently, the equivalence postulatEnfSTEIN’S theory of gravitation must be rejected.
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I. THE CONCEPTS OF MATTER: ENERGY AND MASS tient of force by acceleration, without note of the fact, that
with this definition mass loses its rank as a primary quantity,
One of the great achievements attributabltexweLL’s  because this formulation ignores the possibility of determin-
theory of electrodynamics consists in having made it possibléng its value by measuring other quantitates. For this reason,
to foresee that energy posses inertial mass; that is, it is nedater alia, EINSTEIN came to the misguided conclusion, that
essary only to convey energy to a material body in order tdhere are two types of mass: longitudinal and transversal, and
augment its mass. Thus, one can not say that the mass oftlaereby obtained an unacceptable formulation.
body is an invariant quantity or characteristic of it; and there- The objection we have made MACH’s definition is ap-
fore, it follows that the concepts behindEWTONian laws of  plicable to all operational definitions when they refer to pri-
mechanics must be amended. mary quantities. In each case they introduce some implicit
By means of contemplation of all that which surrounds usor tacit tautological aspect, that is, the definition depends
practitioners of Physics have elaborated two concepts: matt@n an implicit unenunciated law. In the end, this matter is
and energy, corresponding to the entities seemingly respons$o convoluted, that ENZEN (1931), after having studied it
ble for sensual perceptions. For a projectile, for example, onghroughly, ordained the method of “successive definitions”. It
distinguishes the material from which it is made, lead or steelpegins with abstract concepts, then proceeds to the discovery
say, on the one hand, and the energy it posses by virtue of itsf laws, with the help of which these concepts are redefined
motion, its location in a gravitational field and its temperaturewith greater precision, with which, finally, one again reinter-
acquired by friction with air. prets the primary concepts.
Classical Physics is based on a clear distinction between In my view of these matters, and in accord with my book
matter and energy. Itis believed, that this distinction is rooteddimensional Analysisine should start by giving a qualitative
in the fact that matter is inert and ponderous, while energylefinition of each quantity, and then define the means of mea-
is supposed to be exempted from inertia and weight. Becausirement, and give criteria for equality and sums thereof. For
this is in fact not so, however, it becomes necessary to identifinertial mass the qualitative definition is as follows:
other distinguishing features. The purpose of Physics is notto Inertial mass is that quantity for which a force is required
determine the essence of the entities with which it operateso change its motion.
Rather, for its purposes, the following definitions suffice: The criterion of equality is derived from this definition; it is
The energy of a closed system is its capacity to do work onbvious that two bodies have equal inertial masses when they
other objects respond the same to equal forces. To establish the criterion of
The matter of a closed system is that which remains when gummation, it suffices to admit that masses sum by accumula-
is exhausted of all its energy. tion such that if a mass istimes larger than another, when it
Another common concept needing a precise definition, idehaves as if it were the summtimes the first.
‘mass’, in particular as in the vernacular mass is conflated with If one considers that primary quantities are those for which
matter, and in works on Relativity it is held that mass can bat is possible to establish criteria of equality and summation,
converted into energy, andsa versaan assertion which, as then mass is a primary quantity.
we shall show, is inadmissible.
NEwTON introduced inertial mass into Physics, but he did
not specify exhaustively the significance of this important;, T4e INERTIA OF ENERGY
guantity. ERNSTMACH in his work from 1927, gave a defini-
Fion that, with. more or less arbitrary variations, can be found ag js frequently the case in the history of science, many
in many physics booksviACH is one of the founders of mod- \aripus researchers contributed to the discovery that energy
ern philosophical positivism of the Vienna school; he SUP-posses mass.

poses that his definition is purely operational. ButMasRr- THOMPSON (1881) published a series of papers based
GENAU has noted, it actually constitutes a curious mix of epis-y, he study of MxWELLian electrodynamics, which sub-

temological and tautological elementsaltH’s definition, re- sequently were discussed ByTZ-GERALD, HEAVISIDE
duced to its operational elements, would be: Take OGS gz o £ "MorTON, etc! As a result of all of thisTHOMP-
the unit mass. Consider that by whatever means it effects ag,\ reached the conclusion that a charged conducting sphere,

attraction on another bodg, in such a way that starting from - ,,\iing along a straight line, would experience an increase in
rest, both bodies undertake movement; such as can be realiz ss per:

by a spring or electric charges, say. If, n@y,andag are their
respective accelerations as measured simultaneously, then the 4
mass ofB equalsaa/ag. Am= §W/Cz, (1.1)

For MAcCH’s definition to be acceptable, it is necessary that
the cause of the accelerations between these two bodies nghereW is the electrostatic energy of the charge, which is, as
main constant throughout the motion (for example, the elastigs well known, equal to the energy invested in transferring the
force from a spring). This hypothesis, which indisputably un-
derpinsNEWTON'S mechanics, is actually unacceptable, and———
this suffices to rejedIACH’ s definition.

Many authors, includingINSTEIN, define mass as the quo- * WHITTAKER (1951, p. 306) presents a complete survey of these papers.
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chargeQ to the sphere: wherek = 1. Subsequent measurements have confirmed indis-
putably the validity of Eqg. (11.5). This, in turn permits the con-
W= 1Q? B Q? (11.2) clusion that it is necessary to attribute inertia to electromag-
“2C " 41er’ : netic energy, a major contribution of pre-relativistic Physics.
This was the situation whelBINSTEIN (1905, p. 589) pub-
whereC is capacitance anglis the permittivity or dielectric  |ished his celebrated articldst die Tiagheit eines Krpers
constant of the vacuurh. von seiner Energieinhalt aliimgig? (Does the inertia of a
POINCARE (1904) opined that in vacuo the momentum of body depend on its energy?), in which, he posited the in-
electromagnetic waves equals the flux of F@'NTING vec-  controvertibility of the principle of relativity, Eq. (I1.4) with
tor times the factofl/c2. This suggests, that an electromag-k = 1, and the claim that this is true whatever the form of en-
netic field for each unit of volume would have a mass equakrgy. Thereafter, all have believed, including myself, that the
to the product of energy density times the same factor, withformula:

which, in place of Eqg. (11.1), one gets:
P a- (I1-1) g my =W/c?, (1.8)

where the massny corresponds to energy, is due to
EINSTEIN, i.e., that it is a consequence of his theory, not
MAXWELL’s, which has justified labeling iEinstein’s for-
mula.
The difficulty, however, of reconciling Eq. (11.8) with the
inciple of relativity springs into view, as by virtue of this
formula, the state of absolute rest can be distinguished from
any other, in that, for it, a body has an absolute minimal mass.
It seems then, th&INSTEIN has fallen into some kind of er-
ror, and, in effect, a$ves (1952) proffered, his reasoning is
false, because it assumes that which it strives to demonstrate.
| shall explicate a very sensible method that allows the
derivation of Eq. (11.8) as a consequencéWbAXWELL's the-
ory without the necessity to call on the principle of relativity.
In the following, it will be demonstrated that Eq. (I1.8) and
the principle of relativity are in fact incompatible.
Consider a plane wave train. FravhAXWELL's theory we
ow that the vectorE andH are orthogonal and satisfy:

Am=W/c?. (1.3)

This expression predicts, that BiERTZian oscillator emitting
radiation in a particular direction, must recoil for the same
reason that firearms do so.

The problem that concerns us here, also interestegr
HASENHORL, who usedMAXWELL's theory to study the
comportment of a box with reflecting walls containing radi-
ation and moving with uniform velocity. He deduced, that it
is necessary to attribute to radiation a mass given by:

m=kW/c?, (1.4)

wherek is a factor that he first estimated to 83 (1904), but
later, (1905), corrected #y3, a value in accord witifHOMP-
SONS result.
In view of all these works, it must be said for certain that
MAXWELL's theory of electromagnetism leads to Eq. (I1.4), K
. - : . n
with only the value ofk remaining dubious. Experimental
experience supports this formula, albeit, not directly. Such _ €0 =
confirmation was provided bi{ AUFMANN (1901). By mea- H= \/;E- (I1.9)
surements of the deviation @Frays (electrons) emitted by
various radioactive substances, he observed that they exhiburthermore, both vectors are perpendicular to the propaga-

ited an apparent increase in mass given by: tion velocityc, such that taken in the OI‘deJ‘I_E'7 H they form
a righthanded triad, see Fig. (1).
_ my (I.5) Suppose that this wave train perpendicularly impacts a con-
V1-w2/c2’ ducting wall. The electromagnetic field induces currents in the

wall, which, because they are immersed in these very waves,
wheremy is their mass when=0, i.e., when atrest. From Eq. are subject to forces putting the wall itself into motion. If the
(11.5), one deduces that an electron experiences an increasesgstem comprising the wave train and wall contained no mass
mass: but that of the wall, then internal forces would have put the

center of mass in motion, which is a contradiction with the

Am— B 1 1 L6 principle of inertia.
m=m=m = [1-W2/c? I (11-6) The reasoning presented above shows that it is necessary
to attribute a massy to waves that must depend on their
which, can be seen, is just equal to the kinetic endrggli- ~ €Nergyw, their frequency and the vacuum constarggand
vided byc2. As a consequence: Ho. With these quantities, one can form only one monomial of
dimension zero in which the frequency does not appear:
Am=T/c?, 1.7
/ (-7) Mw_ (11.10)
€oloW

2 FERMI (1922), noted that, in addition to the electrostatic energy, if account . . . .
is taken of the stress in the sphere, then the mass differentidiiis:= From this result, by virtue of thetheorem of Dimensional

W/c2. Analysis, there exists a relationship among these quantities of



Y wheredW is the energy deposited in the wall in the interval
dt.

E E Suppose we consider the wall at rest before the arrival of the
wave train, and letlu be the velocity acquired by virtue of the
impulsefdt. To calculate this velocity we call INEWTON's
Law written in the form

fdt = d(Mu), (11.19)

whereM is the mass of the wall, which is converted iMoo+
E dmy, when it adsorbs energy/. Eliminating fdt between
Egs. (11.18) and (I1.19) gives:

FIG.1 A demonstration that waves posses mass dw

the form: asu=_0. Thus,

my = kW/c?, (I1.11) _dw

wherek is a fixed number. Mc
To find the value ok it is sufficient to consider a partic-  Applying now the principle of inertia, which requires that
ular case, for example, the case in which the waves are tahere be no forces exterior to the system comprising wave
tally absorbed by the wall, such that there is no reflectiortrain and wall, implies conservation of motion of the center
or tranmission. Arranging the axes as depicted in Fig. (1)of mass. Because before the impact of the wave tigainy
givesHy = Hy = 0, or H; = H. Furthermore, if the wall is a corresponded to the energyV, which moves with the veloc-
conductor, the vector andD must be absolutely null, and ity ¢, and after the impad¥l + dmy has acquired the velocity

du (11.21)

MAXWELL's equation: du, it follows:
L OHy cdm, daw
OxH=i4+— .12 ——— =du=— 11.22
becomes: or, sinceM is a finite mass:
S . oH
ix=iz=0, 'X:*Txx' (1.13) dmy = dw/c?, (1.23)
The result then, is an alternating current on Yhaxis. To The above analysis demonstrates directly that electromag-

find its intensity, we apphBTOKE’s Theorem to a circuit that netic waves have mass; but, the principle of inertia requires

encloses the wall, such &BCD. SinceHy = 0 and there is  that Eq. (I11.23) be applicable to all forms of energy. In effect,

no reflection or transmission, one obtaﬁi]snultiplied by the the system is a vessel that contains electromagnetic waves

length,a, of sideAB: and moves with velocity. Suppose that, without leaving the
I, vessel, the energy of the waves is transformed into another
I'=aH. (I1.14) species of energy. FollowinGALILEO’s Principle, the veloc-

ity must remain constant. On the other haN&wTON's Law,

The force that the field exercises on the wall then equals: ™. .
written in the form:

f=bl'xB=pl xH, (11.15)
whereb is the thickness of the wall. AsandH are perpen- fdt = d(mu), (11.24)
dicular, this gives in view of Eq. (11.14), a force in the positive
X direction: requireamu= const because there are no exterior forces. As a
consequence, the new species of energy must posses the same
f = poabH? = oAH?, (1.16)  massmy, as possessed by the enewof the waves.

The total mass of a body comprises the sum of material

whereA = abis the area of a cross section of the wall. In view . o .
mass, or ‘proper masshy, and its ‘energetic masshy:

of Eq. (1.9), Eqg. (11.15) can be written:

o Lo 01 4
f = /HogoAH xE:EAS (1.17) M= My + My = My +W/c. (11.25)

whereSis POYNTING's vector. From this, we see that in the  Inturn, the energetic mass is obtained by summing different
time intervaldt the wall receives an impulse: forms of energy: interndll, kineticT and potentiak,:

fdt = %ASdtz dw/c, (11.18) m=mm+ C—lz(u +T+E). (11.26)
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In the absence of potential energy, and when the body ibefore and after the transformation, and in so far as the en-

motionless, one has the ‘rest mass’ ergyW can be assigned the masg, = W/c?, the Principle
) of Mass Conservation can be expressed as:
m =mn+U/c. (1.27)
Mg = My + My, (1.1)

Tables give the rest masses of elementary particles and h that t clai d dui ,
atomic nuclei. One must admit that stabile particles in a norSUch that oné can not claim, as was done dubRGOISIER'S

mal state, that is, when they are unexcited, lack internal epfime, that the mass of the system is held constant permanently.

ergy. In contrast, one must attribute a certain internal energ n the other hand, the total mass of the Unlve_rse .does not
to excited atoms and radioactive bodies, energy that can b ry, as losses suffered by any subsystem are gains in another.

liberated in the emission and transformation processes. Thus, Eq. (I11.1) written in the form:

atoms have a greater energy when excited than when in their My — My = W/cz, (11.2)
normal state, and radioactive transmutation results in a lower
mass than that of the primary particle. is interpreted by many authors, for exampleEIWSTEIN, as

To electrically charge a body, it is necessary to expend enf mass had been converted to energy, and thereby claim that
ergy which is then stored in it. It is to be expected, thereforeMass and energy are equivalent quantities. This manner of
that a charged body has more mass than an uncharged bodpeaking seems quite cavalier. Mass is neither matter nor en-
Confirmation of this expectation occurs for each of the meson§rdy. rather an attribute common to all species of matter and
" andTr, for which the mass is 273 times greater than thaforms of energy. To claim that mass and energy are equiva-
of the electron while the neutraf is only 264 times greater. ent entities, is to confuse an object with its properties, with

That is. there is a difference of: its volume, say. Finally, for an entity to transform into some-
’ thing else, it must cease to be that which it was and acquire a
Am=9me = 9% 9.1091x 10 2%kg., (11.28) new sort of existence. What happens really is, that the energy
W, found in a system in one or another form, is carried with
which corresponds to the stored energy of the charge. it, to be expelled as ma¥¥/c?.

The constant has a double character. For space, it is the Heat and mechanical work can be said to be equiva|ent
measured velocity of light in vacuum with respect to a systenforms of energy as one can be converted into the other. Thus
at absolute rest. From this point of view it may be consideregne attributes the same dimensional formulas to each and
a constant characteristic of the aether, for which the value dQ‘neasureS them in terms of the same units in all coherent sys-
pends on the circumstances that modlfy its index of refl’aCtiOﬂtems_ Mass and energy, contrariwise, are quantities in dis-
depending on gravitation. However, in view of the formula:  tinct classes, their dimensional formulas are different and each

osses its own peculiar units in coherent systems, for example
AW =c*Am, (11.29) tphe kilogram an% the Joule in tH&IORGI sygtem of units. It P
Ry therefore, nonsense to say the energy transforms into mass
nd that they are equivalent entities.
In accord with the notions explicated in my boBkmen-

the referenced constant acquires the status of an ineluctat
universal constant, embellished with abundant bombast, n&

only in optics, but throughout Physics. To meascfst is . : )
y P g y e%pnal Analysis,energy and mass are to be considered as

not necessary to use meter sticks and clocks. Rather, a direg -9 o
measurement of the augmentatiom of mass (or weight) a inseparable quantities”, because between these two entities
there is an ineluctable constant, which turns out td .

body exhibits whenever it communicates, in whatever form, Th d ics foll . v the C i f
an amount of energiAW, for example as heat. Such a mea- € new dynamics foflows rigorously the L.onservation o
ass Principle, expressed as

surement which depends in no way on the structure of aethelxI
figures into the factor/1—v2/c? and, as with all universal Y Mn+ 5 my = const, (111.3)

constants, depends on the system of units. . . o
wherey my, is the sum of all particle masses comprising the

system, and
ll. CONSERVATION PRINCIPLES SW

2 M=o (111.4)

The Inertia of Energy Principle obliges us to reformulate ) i
the two conservation principles, that for mass and for energyS the mass corresponding to the total energy content in the
As new formulations, as presented in many works, suffer torSyStem. Thus, for all transformations that take place in a

tured interpretations, it behooves us to examine this mattef/0Sed system, that is one for which no material particles nor
with all thoroughness. energy would cross an enclosing surface, comply with:

(3 Mo+ SW/)a= (Y Mnt+ yW/SP)g. (111.5)

So, for example, the weight of all mass losses in a nuclear

Consider a system of bodies which is subjected to a trangeactor and the total mass—and its weight—of uranium, re-

formation as a consequence of the exit from the system of eains constant if the system is enveloped in a container that
certain amount of energly. If my andmy are the total masses allows no radiation or particles to escape.

A. Conservation of Mass.



B. Conservation of matter and energy or, by virtue of Eq. (l11.9):

According to Classical Physics it is a certainty that mat- (Mn+U/c?)a— > Mn+U/c?) =W/c2. (1n.112)

ter is indestructible, which was verified in the most violent ) ) )
of chemical reactions, even with large energy dissipation, by The preceeding equations do not allow one to decide
LAVOISIER who showed that the weight of bodies entering awhether matter is conserved or not, but seem logically to im-
reaction equaled the weight of those emerging. As matter caply that the total liberated energy is provided by internal en-
be measured by one of its attributes, and has the advanta§édy-
of being independent of external circumstances, i.e., pressure
and temperature, the principle of Conservation of matter can

be expressed as: with which, and with Eq. (1l.11), one deduces:
(D Mm)a= (3 Mn)g. (111.6)

(Mm)a = (Y Mm)g. (111.13)
Likewise, Classical Physics admits the Principle of Conser-_ . . . . .
vation of Energy: It is in this sense, that the separation of the two conservation

principles subsists, and thanks to this separation one can talk
Z(U +T+Ep) = const, (1.7) of energy levels in atoms and characterize them by their par-
ticular internal energy. As one sees, spontaneous radioactiv-
whereU , T andE represent internal, kinetic and potential ity, uniquely recognized wheRINSTEIN elucidated his the-
energy respectively. ory, doesn’'t permit one to claim that there is a fusion of the
In the new dynamics, we abandon certitude in the sepaprinciples of conservation of mass and energy. We shall see,
ration of Egs. (I11.6) and (I1l.7) and, in its place, take Eq. that without exception, discoveries made subsequently oblige
(111.5), which is the sum of the two after dividing the second us to claim that matter (not mass) can be transformed into
by ¢?. Maybe this is the reason that relativists claim, thanksenergy andiisa versaand that these transformations are reg-
to EINSTEIN, that two conservation principles from Classical ulated by a principle expressible as:

Physics, i.e., that for matter and energy, can be melded into a
single principle: matter+ energy= const (I1.14)

W = U, — Ug (I11.12)

mass= energy= const. (111.8) As in these phenomena matter has to vanish, it is not possi-
ble to satisfy Eq. (111.13), and even less to satisfy Eq. (111.11)
This assertion is inadmissible, however, because one can nbecause the energy is released not from internal energy, but
add mass with energy without violating the Principle of Ho- from the annihilation of matter. By contrast, Eq. (Ill.5) is
mogeneity. Eq. (111.5), which is correct, makes manifest, thatsatisfied, which can be expressed saying that the principles of
that which is to be added, is the mass equivalent of matteconservation of matter and energy are fundamentally unified.
to the mass equivalent of energy. The faatof, which is
ineluctable, has as its mission to save the Principle of Homo-
geneity. IV. RECIPROCAL TRANSFORMATION OF MATTER AND
As for attempted fusions of the two principles, one canENERGY
claim that while atomic nuclei remain unaffected, matter is ] . ] . ]
conserved and Egs. (111.6) and (I11.7) are executed separately, Phenomena mentioned in the preceeding sections consist of
as a consequence of Eq. (I1.5), but not the reverse. Otherwid@€ production of twined particles (electron-positron, proton-
when there is change in an atomic nucleus, as happens by r@dtiproton, neutron-antineutron) by means of the consumption
dioactive decay, each principle contributes independently t&f the energy of a photon. And, the inverse phenomenon, that
the transformation. is, the mutual destruction of twined particles, results in the
In radioactive transformations, large quantitates of energproduction of energetic radiation. _

are liberated as kinetic energy of decay products or as pure !N this phenomenon, total mass is conserved, as what is lost
energy in the form of photons. One may plausibly supposd? Proper mass, Is gained in radiation mass. Conservation of
that the instability of a radioactive nucleus, or in general oftotal mass subsists then, as expressehdy- me. Since:
fundamental particles, is due to stored internal en&kgyror 1
this reason it is not possible to confirm Eq. (l11.6) directly, Mg = Mm + M + 5 (TL+T2); My =W/c2,  (IV.1)
since that which is measured experimentally with a spectrom- ¢

eter, isrest mass: giving:
m =mm+U/c% (111.9)
1
2
and, as is verified experimentally, liberated enéigis given W/ = Mm + Mz + 5 (T +T2). (Iv.2)
by:

Positing that matter has been transformed into energy, is to
(my)a— (Z m)g =W/c?, (11.10)  abandon the validity of conservation principles. One cannot,
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without exception, say that a single principle is united intowhereT is the kinetic energy ofLi’), andw the photon en-
conservation of mass and energy, when what has happenedesy.

the first is satisfied and not the second. On the other hand, Conservation of energy, expressed by Eq. (111.7) leads to:
Eqg. (IV.2) suffices to resolve problems of examining energy

W that is liberated by mutual annihilation of two particles, T=-W, (IV.9)
and still constrained by the conservation of momentum, as we
shall see below. and in that this equation appears compatible with Eq. (I1V.8)

The reciprocal transformation of matter into energy is adhe has compatability with Eq. (I1.6), that is, there must be
process comparable to the conversion of heat into work. ligonservation of proper mass. But, per the previous numerical
both cases it has to do with quantitates that transform one intégsults, there was a loss of proper mass given by:
another, such that there is a proportionality between the two 6
guantitates. In thermodynamics one encountgrsreiple of Amp = —0.00768m, = —1.276x 10" g, (IV.10)
equivalencdy virtue of which heat(), is absorbed in a cyclic i i
transformation and worky, is done on bodies exterior to the SO that, therefore, Egs. (1V.8) and (IV.9) are incompatible.

system according to the equation: Lose of proper mass indicates that a portion of matter was
transformed into energy, so that Egs. (Il.7) and (IV.9) are not
W =JQ, (Iv.3)  applicable. In its place one must use the principle of equiva-

lence of matter and energy, that is:
whereinJ is a universal constant.
Analogously, the transformation of matter into energy —Amy = (T+W)/c, (IV.11)
obeys a principle of proportionality between quantitates that, | .
with one or another magnitude, are involved in the consideredhich gives:

h :
phenomenon THW — 1.276x 10 25.9x 107° = 1.148x 10 Serg
a quantity of matter a quantity of energy (Iv.4) = 6.20MeV. (IV.12)

Quantities of matter can be measured by various means, for This energy is distrubuted among the lithium atoms and
example, for weight or for volume occupied under specifiedphotons. To determine the part that corresponds to each, one
conditions. For our purposes, the most convenient measureaust apply the principle of conservation of momentum, the
ment is that of proper mass, for which the the proportionalityresult shows that the portion in the lithium atoms is negligi-
(IV.4) becomes: ble.

My = kKW, (IV.5)
. V. THE NEW DYNAMICS’ FUNDAMENTAL LAW
where the constant equaks= 1/c?, if one uses a coherent

system of units. _ _ _ POINCARE (1904) has noticed that it is necessary to change
To clarify these notions, consider the nuclear reaction NEWTON'S Law:

LiS(n,y) — Li". fdt = ma, (V.1)

Since all the particles involved in this process are stable, wgg that it can take account of the finite velocity of light. To
dispense with changes in internal energy, as well as others thagnvince oneself of the necessity to make such a modifica-
are not involved, like gravitational energy, so that: tion, one need only consider the case whenc, as then the

2 factor /1 — u?/c? becomes imaginary, which signifies that a
m= My +T/c". (1v.6) moving body at this velocity loses real existence.
In the theory of relativity one substitutes for Eq. (V.1) the

Proper masses have been determined using a mass Sp?&iowing'

trograph, and taking the unit of mass to big = 1,661 x

10-?gr., yields the values: a

V1—w2/2’

and takes it that this is applicable whatever the nature of the
force. We propose to examine the reasoning behind this equa-
tion to show that it pertains to contact forces such as elastic

Supposing that the kinetic energy of the impinging neutron_~ . . .
is negligible with respect to the lithium nucleus, Eq. (Ill.1). collisions and shock due to wave impact, but not to forces act-

which expresses the conservation of total mass, becomes: ing at a distance, e.g., frqm electric gnd magnetic flelds.
LORENTZ (1916) studied theoretically the motion of an
6 o1 electron in an electromagnetic field and deduced that with in-
Min(Li®) + Min(n) = Mn(Li %) + 5 (T +W), (IV.8)  crease of velocity there is an increase of mass up to infinity

f= mm% (V.2)
mm(Li%) = 6.01697;
mm(n) = 1.00893; (IV.7)

mm(Li7) = 7.01822



whenu = ¢, and giving the remarkable circumstance, thatitis To deduce the new law, we begin by supposing that there

also necessary to distinguish betwéamgitudinalmass: is no action-at-a-distance (fields) and that movement results
m from contact forces, likewise for those due to pressure exer-
m=————— (V.3) cised over the body in motion by external bodies. We also

— u2c2)3/2° X . ) A
(1-u2e?)¥ take it that internal energy is unaltered by motion. Under these
valid when the force is parallel to the velocity, amenverse ~ conditionsEp = 0, and Eq. (VI.1) converts to:

mass:
m m=m +T/c, (VI.3)
m=————— V.4
valid when the force is perpendicular to the instantaneous ve-
locity of the body. m = mn+U/c2 (V1.4)
EINSTEIN (1915), claiming he did not know ¢fORENTZ' S o . _
works, studied the same motion of a charge in an electromag- The principle of energy conservation requires that all work
netic field, and applied the principle of relativity. He con- done by these forces is transformed into kinetic energy:
cluded thaNEWTON's equation, (V.1), should be replaced by:

where

f.di =dT. (VL5)
my du
T (1—w@jRRdt’ f, anduparallel (V.5) On the other hand, Eq. (VI.1):
m f= @ (V1.6)
f=——-S—-—, (f,anduperpendiculay. (V.6)
(1-u?/c?) dt substituted into Eq. (VI.5), gives:
Note thatEINSTEIN obtained the same expression for lon- g-d(md) =dT (VI.7)

gitudinal mass as dilORENTZ, but not for tranverse mass.

EINSTEIN's equations have the defect of being applicablepr
only when time intervals are infinitesimally small, and then
only in the particular case in which the force is constantly nor- }mdL? +uldm=dT. (V1.8)
mal to, or parallel to the trajectory; in fact however, generally 2
the angle between force and velocity is constantly changing.  Replacingm by its value, Eq. (VI.3), yields:

PLANCK (1906) correctly gave the fundamental equation ,
the form (V.2) for which it is not necessary to distinguish be- 1 u
tween longitudinal and transverse mass. This equation is ac- E(m‘ +T/)duP + @dT =dT, (V1.9)
cepted unanimously, and he is justifiably considered a great . )
German savant as founder of relativistic mechanics. Howevef© that separating variables leads to:
PLANCK deduced his equation based on the Principle of Rel- dT AP
ativity, so that all merit is attributed tBINSTEIN. We shall 5> = >
show that it is possible to derive Eq. (V.2) just by taking into m+T/ct 1-u/c
account the inertia of energy, such that it is unnecessary tﬁnegrating with initial conditiong = 0 for u = 0, results in:
consider the Principle of Relativity. Further on we shall show

(V1.10)

even that Eq. (V.2) is actually incompatible with this princi- ) m c? 5,
or rearranged:
VI. DERIVATION OF PLANCK'S LAW
m=m+T/c?= 1-u2/c2, VI.12

We accept the validity oNEWTON'S Law written in the m / m/ / ( )

form: from which one need only substitute into Eq. (VI.1) to get
Fdt = d(mu), (VI1.1) PLANCK's equation:
- d d
and that the total mass of a body, instead of being constant as fdt= maﬁ. (VI.13)
in classical dynamics, depends on the energy according to the Vi-w/c
formula: Solving forT in Eq. (VI.12) one obtains for kinetic energy
m=mn+ (U +T+Ep)/c (V1.2) the value:

which we obtained irB2 as a consequence MAXWELL’S T =mc? < 1 > ) (V1.14)

-1
theory. V1-1u2/c?



Expanding this in a series of powerswfc, gives one: The velocity a body acquires when augmented with energy
W converted completely into kinetic energy, is obtained when
T =W in Eq. (VI.13) which when solved far yields:

1u> 3ut
f— 2 —— —_—— ...
T —mc (2C2+8C4 ) (VI.15)
w o 1
so that for velocities much less than that of light, the result is z2=1- 1-W/(m2)2’ (V1.22)

the same as in classical dynamics.
The symbolsm and my represent measurements obtainedfrom which one deduces that= ¢ for W = «. This explains
with the same units, the kilogram 8 In these conditions, why it is impossible to obtainelocitiesgreater than light, as

the Metric Principle : the total energy in the universe is insufficientachieve this
_ _ velocity for even the smallest particle.
quantity= measurement unit, As a function of kinetic energy, momentum equals:

says that the measurements are proportional to their respective 2
quantities, from which by Eq. (VI1.12) one deduces: pP= mc\/(1+T/(n}c )2 =1 (V1.23)

<m>=<m > /4/1-Uu2/c% between quantitites
VIl. MOVEMENT OF A PARTICLE SUBJECTED TO A CONSTANT

(VI.16)  conTACT FORCE
and, as a consequends,transfer to a body the energy nec-

essary for it to move with velocity its mass must be divided  pg an example, let us find the equation of motion for a

by the factor,/1—u?/c?, which is less that unity. In particu- pody subjected to a constant contact force. Suppose that this

lar, to transfer a body from the system at 18stio the moving  pody starts out at rest and moves alongXhexis; integrating
reference systerd, so thatitis fixed init, i.,eu=v,and Eq.  p_aNCK’s equation leads to:

(VI.16) becomes:

u
<m >=<m > /a. (VI.17) ot= 1—w2/c2’ (Vil.1)
~ Momentum (once know as thguantity of motiohis de-  \whereg = f/m, is the force per unit mass. The velocity in-
fined by the identity: crease per unit time equals
B = m, (VI1.18) - gt ViL2)
. . . [1+gi2/c2’ '
and, therefore, is @econdary quantityntroduced with no

more purpose than to abbreviate terminology. With its aid
the fundamental law can be stated asomentum equals the
change produced by impulse:

which does not increase proportionally to time, but ever more
slowly, tending to the limit as time proceeds.
The distance traveled equals:

fdt=dp. (VI.19)

t t
x:/ udt:g/ %,
In a system comprised of multiple bodies, with no forces 0 0 V1+gt/c

but those between these bodies, which are always parallg),-
equal and opposed, the overall sum is null so that sys-

tem free of external forces, the total momentum is constant. c2
X:E(\/lJrgztz/cZ—l). (VI1.4)

(VI1.3)

In NEwTONian mechanics one must take it that mass is
constant. In the new dynamics one must take it that mass
varies with the body’s stored energy. Thus, momentum is not Whengt is negligible in comparison to, this expression
simply proportional to velocity, as the proportionality factor is reduces to:
variable. In absence of action-at-a-distance, for example, Eq. 1
(VI.14) is valid, and by comparison with Eq. (VI.16) gives u=gt, x= ,th, (VI1.5)
momentum the form: 2

md which are the classical results for uniform acceleration.
P=—F——= (V1.20)

Nieara

The quantity defined by: VIIl. MASS AS A TENSOR

my With the form given byPLANCK to the fundamental equa-

\/m’ tion, the conceptions of longitudinal and transverse mass, in-
troduced primarily byL ORENTZ, but later taken up again by

is denotednass in motion. EINSTEIN, have been rendered superfluous. In their place,

Mmov. = (VI.21)
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rest massmy, for which the value is constant so long as in- IX. MOTION IN A FORCE FIELD

ternal energy is constant, plays a role. In many books, even

in elementary treatises, one talks still as if longitudinal and Relativists attribute validity te°LANCK's equation

transverse masses were cherished acquisitions from relativity

theory. It behooves us, therefore, to focus on this matter. myU
The forcef applied to a body and the accelerat@which

Neenars
it evokes are coexistent vectors, that, in general, have different . . .
directions. One may, therefore, write: ¢ and deduce from it that the mass of a body varies with the

B velocity according to:
f=Mg, (VI1.1)

whereM is a tensor. This expression is not a new law, rather
the definition of a secondary quantity as a function of the
primary quantitiesf anda. To determine the components of ~ Inthe theory we have developed, Eq. (IX.1) is only applica-
M we have to return to the law that relatBwith &. Inrectan-  ble when the work realized by effect of the forEeés invested
gular coordinates the vector equation, (V.2), decomposes inté kinetic energy, without varying internal or potential energy.
three equations: It is of interest, then, to investigate what would be the equa-
tion of motion in the new dynamics when the body finds itself
in a force field.

To resolve this question, we base our considerations on the
principle of conservation of energy, stated thasbody that
neither adsorbs nor emits energy moving freely in a force field
does so, such that the sum of kinetic and potential energy is a
constant.That is:

fdt=d (IX.1)

me—_%* (IX.2)

N

i=XY,z (VIIL.2)

d U;
T . B—
TNy o

Carrying out the indicated derivations gives:

uy /c2 d”). (VIIL.3)

(1—w?/c?)32 dt

&,
fi=my +
' ( V1-u?/c?
Taking the instantaneous velocity parallel to Xexis, so
thatuy = u, uy = u, =0, results in:

u?/c? B ax _
VI @@R) " -y

d(T+Ep) =0. (IX.3)

From this expression we deduce immediately, that if internal
energy is constant, then the mass of a solid body is given by:

1
Vi-4@/c M= mn+ (U +T+Ep)/c® =m + (T +Ep)/c® = const,

PSR (1X.4)
Y 1—w2/e)y? which means, that in contrast to the relativistic formula, Eq.
ay (IX.2), the mass of a body moving freely in a force field with-
fz = (1—w2/c?)1/2 (VIIL4) - oyt adsorbing or emitting internal energy,imglependent of
the velocity.

For_those_not distingL_lishin_g laws and definitions, massis a 1, Apply Eqg. (IX.3), it is necessary to investigate the value
quantity defined by the identity: of dT as a function of velocity and alE, as a function of
coordinates. IEEINSTEIN's dynamics, as well as the new ver-
force sion, kinetic energy of a body with massg and velocityu,
acceleration equals:

and from that, for them, it ceases to be mass as an intrinsic 2

property of a body, and they distinguish between longitudinal T= _me m,c2, (IX.5)
and transverse mass, which depend on external circumstances, Vi-u?/c?

namely the angle between the force and velocity.

mass=

The component®l;; are defined by resulting in:
a-du
fi=S Mai, VIS _m _
i ; IEY (VIIL5) dT m(l—uz/cz)?’/z' (IX.6)
i.e., To find an expression fatE, requires knowledge of the na-
_m 0 0 ture of force fields, the most important being electrical, gravi-
(1-u2/c?)%/2 m tational and magnetic.
M = 0 e/ 0 . (VIIL.B)

M
0 0 (1—u2/c2)1/2

Obviously, this is a symmetric tensor, for which one princi-

ple axis is in the direction of the instantaneous velocity.

A. Electric field.

In an electric field, if® is the potential, the potential energy

Secondary quantities are introduced into a theory for reapf 5 charge equals:
sons of convenience. Longitudinal and transverse mass sim-

plify nothing, in fact they constitute gratuitous complication.

Ep = QO, (IX.7)



and as a consequence:
dE, = Qdo. (1X.8)

Substituting (IX.6) and (1X.8) into Eqg. (I1X.5), and taking it
that® depends solely on spacial coordinates, yields:
Q(O® - dR)(1— 1?/c?)¥/? = —my - dl. (1X.9)

As dx= u,dt; dy=uydt; anddz= udt, the preceeding equa-
tion takes the vector form:

—Q(1-1?/c*% 00U = m%-a. (1X.10)
From the equation of classical dynamics:
o dd
f=m— IX.11
m 0 (IX.11)
on the other hand, one obtains:
—Qmm-azm%-a (1X.12)
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and one sees that in the new dynamics, force exercised by a
gravity field equal®
f=—-m(@1-u?/c?)%?0v. (1X.19)
Egs. (IX.13) and (IX.19) reveal a very interesting peculiar-
ity of the new theory of dynamic&Vhatever force field affects
a moving object diminishes as velocity increases until it van-
ishes at the speed of lightAs a consequence, no body can
obtain the velocityu = c. Both velocities are related implic-
itly through the equation:
f=fo(1—u?/c?)%2 (1X.20)
The following considerations serve to make the difference
between force at rest and force in motion manifest.
The weight of a body is the force that must be applied to
keep it at rest in a gravity field. It has, therefore, the same
value but of opposite sign to static force, Eq. (1X.19):

W= —fo=mDV. (1X.21)

On the other hand, the force which gravity exercises on the
same body when passing the same location with velaogity
lower, as it has the value:

_ _ . _ f=—w1—u?/c??%2 (1X.22)
Comparing this equation with (IX.10), one sees that in the

new dynamics, force exercised by a field is not given by the In order that an electron shall acquire the potentiatbof
product of the gradient of the potential and charge, rather byvolts, it must be vested with a quantity of energy equaid®g

with which its mass must be converted imo= my +ed/c?.

The velocity acquired by an electron on passage from the po-

tential @ to zero, is determined by the expressibn= ed,

As a consequence, the fundamental equation in the new dyuch that:
namics, for a body moving freely in an electric field, is:

f=Q(1-1?/c?%?00. (1X.13)

mc?

Y me® =ed, (1X.23)
) par da V1-u?/c?
—Q(1—-1?/c®)%20d = m —. (1X.14) _ _ . .
dt from which one deduces that this velocity satisfies:
: 2
If one lets: W 2+ed/c® ed ' (1X.24)
o 2 (1+ed/mec?) mec?
f=fo(1—u?/c?)°%?, (1X.15)

As a check of this result, consider, that when the enefigjis

Eq. (IX.10) takes the same form as in classical dynamicsmuch less thanec?, the last expression becomes:

namely:

u? = 2ed/m, (1X.25)
Pl m%' (1X.16) which coincides with the result from classical dynamics:

1

émru2 = ed. (1X.26)

B. Gravitational field

If V is the gravitational potential, potential energy equals: 3 Egs. (1X.14) and (1X.18) were obtained starting from conservation of en-
ergy and the value of kinetic energy given by Eqg. (1X.5).BWNSTEIN'S

Ep =mV. (IX.17) theory the equations of motion would be:
Qo4 _mu ., d md
Substituting, thermfor Q andV for ® into Eq. (1X.14) gives: dt /1-w?/’ dt \/1-w?/c?’

and, by being incompatible with those found in the new theory, implies that
EINSTEIN's theory must be in contradiction with the Principle of Conser-
vation of Energy.

dd

—(1— /20y —
(1-u?/c?)3 ZDV_dt.

(1X.18)
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Take note that in Eq. (1X.23) the rest masg of an elec-  without having reduced mass or energy of other bodies. This
tron, rather than total mass= me+ed/c?, plays a role. The would be, then, an increase of the mass of the universe, and a
latter mass represents the inertia of an electron, that is, théolation of the Principle of Mass Conservation.
resistance it offers to any force tending to divert it from its Recently BRILLOUIN (1964) recognized the need to at-
trajectory. tribute inertia to potential energy, and as a consequence, to

modify the foundation of relativistic mechanics. He remarked
that the difficulty here, is to know where to locate such mass,
C. Magnetic fields since to have potential energy it is necessary to have at least

o ) o . two bodies, and that fact presents the issue of distribution of
In a magnetic field for which the magnetic induction equalspgtential mass between them.

B, a charge is subject to a force: BRILLOUIN considered two charged bodies and concluded

that potential energy must be attributed to their electrostatic
interaction and distributed equally between them. This claim,
does no work and doeQowever, is not acceptable, as according to an easy demonstra-

which, being normal to the trajectory, > hat the int i deri | and i
not alter the tangential velocity. As a consequence, its po-'on' whatever the interaction engendering équal and opposite

tential energy is null and it leaves kinetic energy unchangeoff)rces' potential energy must be distributed in inverse propor-
Lacking potential energy, therefore, the equations obtainefon t© their respective proper masses.

above do not apply, in their place the following is valid: Suppose both bodies are in contact and at rest. To separate
them one has to apply to each forces that, by hypothesis, are

_ du always equal and opposite. In so far as all work realized by
Q(UxB) = ma, (IX.28) both forces is converted into potential energy, it suffices after
separation, that both bodies return to being at rest. Because it
where is not important how long the separation took to accomplish,
we may suppose that it transpired with infinitesimal velocity,
m=m +T/=m/\/1-u2/c?, (1X.29)  in the manner of reversible thermodynamic transformations.
Under the conditioru — 0, and with an eye t&9, clearly a
is the total mass, which remains constant. classical equation of motion pertains. In particular, the center

If the field is homogeneous, acceleration, which is normabf mass remains at rest, so that taking the origin of coordinates
to the trajectory, would be constant, so that the motion is cirat that point, we can write:

cular with radius satisfying:

f=Q(lxB), (1X.27)

f = mi/r, (1X.30) Mmdx+m,dX = 0. (X.1)
or, if Bis perpendicular tai: The potential energy acquired by each body would be equal
to the work realized through the fordg exercised on both
r =mu/QB. (IX.31) bodies if they were at rest. Thus, by effect of Eq. (X.1), one

has:
This formula has been confirmed in modern accelerators,

a fact wh,ich is considered by Relativists as confirmation of dEp = fodx dE, = —fodX = foﬁdx (X.2)
EINSTEIN'S theory. But as Eq. (1X.31) coincides with that M
from his theory, it can not distinguish between the two.

As a consequence:

X. THE MASS OF POTENTIAL ENERGY m, .,

dEp = —dE, (X.3)
If the reader consults works on Relativity in order to learn

whether to a_ttribgte inertia to potential energyEmSTE|N’s _and, in so far as initiallfE, = E;) —0,

theory, he will wind up perplexed, as they just pass over this

guestion in silence. Moreover, since in applications this mass

is not taken into account, they tacitly consider that it does not & = %, (X.4)
exist. In fact, this being so, they thereby actually reject the Ep M

principles of conservation of mass and energy, as we shall ar-

gue below. such thapotential energy due to the mutual interaction of two

Suppose that a body is at rest where its potential energy igodies is apportioned in inverse proportion to their proper
E,. Under these circumstances, if potential energy reduces irfnasses.
ertia, a body’s mass is reduced to its rest nmassTaking it Given the miniscule masses of elementary particle, in com-
that motion is unrestricted, potential enefgyis transformed  parison to bodies that engender electric and gravitational
into a quantity equivalent to kinetic energy, for which the forces, it is practically so, that all potential energy is localized
total mass of the body experiences the augment:ﬁp’rmz, in the latter.
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XI. INERTIAL AND GRAVITATIONAL MASS Xll. CONSERVATION OF MOMENTUM PARTICLE COLLISIONS

In accord with ideas developed in the theory of dimensional In NEwWTON's dynamics one takes it that the mass of a body
analysis of physical quantitiesPALACIOS, 1956), it is nec- is a constant characteristic of a body, which satisfies the equa-
essary to distinguish between inertial mass and gravitationdion:
mass. The first is what is defined $1, while the second is .
that responsible for the force acting when a body is in a grav- fdt=madu. (XI1.1)
itational field.

From experiments bEwTON andESTVOS, results show, Moreover, the principle of action-and-reaction holds, accord-
that when a body is held at rest, there is a proportionality belnd to which if one body exercises a for¢eover another, the

tween inertial and gravitational mass: second exercises the foreef on the first. This means that
mutual forces are parallel, equal and opposite (although they
my = GY2my,. (XI.1)  can not be on the same line), such that their sum is null. As a

o consequence, a system of bodies subject to mutual interaction
As a consequenc®EWTON's Law of Gravitation can be ex-  complies with the equation:

pressed as a function of gravitational masses:
Z mydd; = 0; or, Z miU; = const (X11.2)
I |

f— Mg;”g (X1.2)

If, to abbreviate terminology and notation, one introduces a
vector callednomentumdefined by:
Bi = m 0, (XI1.3)

. . . . i then Eq. (XII.2) can be written as:
The issue now is to investigate what happens with grav-

or as function of inertial masses:

Momg

fo=G— (X1.3)

itational mass when the body is in motion. Following re- z pi = const, (XI1.4)
sults from89, the force exercised over the body by gravitation ]
equals: o ) o )
which is the expression of the principle Gonservation of
f = fo(1—u?/c?)%/?, (X1.4)  Momentum.

These equations are valid whenever the effect of mutual

where forces is simply to change velocity; but, they can not serve
fo = —mpCV, (X1.5) for study of particle collisions.

Study of the minutia of collisions is intractable because, in
is the force at rest, or that which is applied to a body to keef@eneral, of extremely complex phenomena including: elastic

it at rest, i.e., the force measured by a dynamometer. and inelastic deformations, conversion of energy to thermal

In view of Eq. (XI.3), Eq. (XI.4) can be written: energy, excited chemical reactions and the like. But, what is of
practical interest, is not really the vicissitudes of the collision

f— GMOmO (1 uz/c2)3/2. (X1.6) itself, as much as its final outcome. To investigate how bodies

r2 move the instant after collisions, one introduces the principle

If the field is constant, that is, if the body is held at rest, ©f conservation of momentum of thienter of massyhich is
thenMy = G1/2Mg, and Eq. (XI.2) converts to: an extention of the principle of inertia, and which is valid in all
g o systems exempt from exterior influences, whatever transpires

M during collisions.
_12MgMg 5 21372 g
f=G r2 (1—u/e)™~. (X1.7) As, by definition, the coordinates of the center of mass are:
Comparing this with Eg. (XI.2), one sees that: M
pating 9. (1.2 =2 g_xyz (XI1.5)
my = GY2(1— 1?/c®)¥/2my; (X1.8) 2im

and, therefore, it has been shown th#te relationship be- the just mentioned principle is expressed as:

tween inertial and gravitational mass is not constant but de- zmai — const, (XI1.6)
pends on the velocity. 4
Measurement results of gravitational mass at increasing ve-
locity diminishes such that at the speed of light they vanish alwhich shows that in collisions, Egs. (XIl.2) and (XI1.4) re-
together.In particular this means, that light itself has inertial main valid.
mass but no gravitational mass. In the new dynamics, in so far as mass is not constant, it
The theory of relativity, however, is based explicitly on the is necessary to investigate the means of defining the center
identity of inertial and gravitational mass; thus, the implica- of mass. As the effects of collisions must be determined by
tions of this are that this theory must be in principle false.  velocities at the onset of collisions, plausibly any mass should
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be that of ‘mass in motion’, i.e., rest massaugmented with  that the value ofi satisfies:

kinetic energyT, in other words:
(1 uovo/) /1 12/? = (1~ uvo/c2) /1~ B/,

m=m+T/=m/\/1-u2/c2. (XI1.7) (X11.13)
Squaring and simplifying gives a second order equatiom in

Thus, in the new theory, just as EINSTEIN'S, momentum which, besides the trivial solutiam= ug, also yields:
must be defined by: - 2V — UO(lJrV(zJ/Cz)

= XIl.14
5= my U XIL8) 1+ 3 (Vo — 2uo) ( )
V1-w?/c? When the target is fixedip = 0, and theru = —up.

To justify the hypotheses underlying the preceeding cal-
culation, which can appear exaggeratedly artificial, we shall
obtain the same result applying our version of evari-
ance Principle, according to which, one can consider that
all physics equations transform covariantly undspRENTZz-
EINSTEIN transformations, even as expressed in new, well
chosen, variables (or ficticious quantitates)

We start supposing that the target is fixed in a sys@®mat
bsolute rest and, that it and the projectile are perfectly elas-

Again, we consider three important cases.

A. Elastic collisions

Consider a body of mags. moving with velocityug collid-
ing with a second body of mass, with velocity vp. Further,
suppose they are spherical and moving on the line joining theig

centers, where our purpose is to determine their velocities, tic. Just as they make contact, both bodies begin to deform,

andv, after a 90."'5'0“ . . more or less according to their modulus of elasticity. The de-
Elastic collision means that both bodies conserve mterna‘l

M ) diatel i d followina th ormation continues until all the projectile’s kinetic energy is
energy. vioreover, immediately preceeding and tollowing th&, ,stormed into energy of elastic deformation. At this point,

CO”'S.'O’?* the potential energy 1 null. Thus, °”'¥ Kinetic en- the process is reversed, so that when the projectile and target
ergy is involved, and the principles of conservation of ENeI9%, ave recovered their original form, that is, when the cease to
and momentum are expressed as: have contact, all energy of elastic deformation is reconverted
back into kinetic energy, and as the target is fixed, the projec-

my M, . mr My . S . - . . .
v + = = = + = tile must regain its original velocity, but with opposite sign.
\/1_?3 \/1_33 \/1—? \/1—‘:—2 That is:
M M
m U _+ rVoV2 _ _mu _ rV : (XI1.9) ) . o s
u _w _v u=—up if vo=0; ~ 0. .
\/1 -3 \/1 -3 1-% \/1 @ o o m/ ( )
I We now investigate what happens when the target, instead
or, as weil. of being fixed, moves with velocityp # 0. If one takes a
r 8 reference frame moving with this same velooity and em-
m i 1 B i 1 ploys within it aberrated rulers and clocks artfully so as to
M, \/1_ Up \/17 2| \/17 2 ' satisfy LORENTZ-EINSTEIN transformations, then measure-
L ¢ c c2 T ments will turn out incorrect, but Egs. (X11.15) will be covari-
(X11.10) ant with respect to said transformations, and they will yield:
my u u % \ ,
— 0o _ 0 = - ° . U =—uy if v'=0. (XI1.16)
R g g
B ¢ o ¢ (>°<2”_11) This solution, which relativists take as valid, is notably

false, but is correct ir§, which is what is obtained with no
ore than using formulas for a change of variables f®to

S. To do so, we must call on just the relativistic formula for

the addition of velocities:

Although these equations solve the problem, it is not eas
to isolateu andv. However, for many practical applications in
physics, the situation consists of a projectife, vastly lighter
than a targetM,. Under such assumptions;- vp and there is

significant simplification. Dividing Eq. (XI1.10) by (XII.11) u+v

gives: u= Truv/e (XI1.17)

2 i i -

[1_ g72 1o 270 1_ %22 1 \0,72 which leads directly to:

— . / /
NP _ 0 /1-% wW/i-% v /12 S AP XI1.18
Uy/1-z-uyl-3 wvwWil-3-Vvoyl-5 to 1+ voup/c?’ . 14 voup/c?’ ( )
(X11.12)

In the limit, whenv — vp, the second term becomes inde- and now by just eliminatingg between them one obtains Eq.
terminate in form, but can easily be seen to equdt?, so  (XI1.14).
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Whenug = ¢, which is the case for the photon, the result A case of particular interest is one in which a body collides
is u= —c, such thateflected light in a moving frame propa- with a much larger target. Ifn,, << my, these equations
gates with the same velocity as if the mirror were at ré@$tis  give:
deduction is in accord with experimental results obtained by

MICHELSON (1913). ~ 1o ~ 02 M
U~ Uy; Mr_mmz<almn2+1), (X11.27)
B. Inelastic collisions
U (08))
Consider two bodies moving along the same line with ve- 2~ (0(1 - 1) : (X11.28)
locities u; andup, which collide and fuse together. We now
seek to investigate the proper mads, the velocityu and the Since kinetic energy of the first body equals:
internal energyJ, of the combined body resulting from the
collision. We suppose that initially both bodies had no inter- (1
nal energy, and that there was no annihilation of matter, nor Ty Mm,C < o 1) ’ (X11.29)
energy interchange with exterior bodies. This is the case, for
example, when a neutron is captured by a nucleus. Eq. (XI11.28) takes the form:
In order to compact notation, let:
U ~ (Ty + M, )0tz — My, €2, (X11.30)
— 112 /o2
a0 14/ (X11.19) which gives us the portion of kinetic energy stored in the form

of internal energy. If the target remains at rest, thea- 0 and

U ~ T;. All the projectile’s energy is converted into internal
M .

Dy | T _ B (xi120)  EMer9Y

a1 (08} a

conservation of total mass, then, is expressed as:

and conservation of momentum: C. Collision of antiparticles
Mm, Uy u Mu
al + m;z = 0; : (XI1.21) Another case of particular interest is that in which a parti-
! 2 cle collides with its antiparticle and all energy is converted to
Multiplying Eq. (XI1.20) by u and subtracting from Eq. radiation. In this case the particles might have internal energy,
(XI1.21) gives: of spin or charge say, which requires replacing their rest mass
with
m(ul—u)Jr%(uz—u) =0, (X11.22)
ag a m = mn+U/c2 (X11.31)
which gives: If W is the radiative energy liberated in the collision, con-
My Ug 02 + My, UpQ (XI1.23) servation of total mass implies:
B My, 02 + My, 01 ' ' 1 1
T 2
Knowing the value ofi, permits evaluating Eq. (XI1.20) for Ty (0(1 + o(2> w/e, (XI.32)
M;:
and if this should be a single photon, the energy equals:
M = o (M, /01 + My, /012). (X11.24) L1
2
If, as relativists claim, the principles of conservation of hv =W =mc <a1+a2) : (XI1.33)
mass and energy are unified into a single principle, we would
not be able to calculate the values of the proper nssnd Conservation of momentum, however, requires:
internal energy after a collision. But, calling on the results
of 83, we can consider also the principle of conservation of u U\ W XI1.34
proper mass: o, 0] ¢’ (XI1.34)
Mm = M, + M. (XI1.25) or
As: M, = Mm+U/c2, Eq. (XI1.24) gives: W =cm (ul + uz> . (XI1.35)
0 Q2
v_ 4 9 1 XI1.26
2 My o T My o, ) (X11.26) Comparison of Eqgs. (XI1.33) and (XI1.35) gives:

which is the solution to our problem. (c—ug)/ai+(c—up)/a2 =0, (XI1.36)
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which can not be satisfied because both terms are always pos-We shall see, paradoxically, thBINSTEIN'S dynamics is
itive. Thus, necessarily at least two photons result from anin this sensantirelativistic. His dynamics takes as the funda-
nihilation so that the principle of mass conservation gives thenental equation:
equation:

femd 0
m( = +1> Zgz(vl-l-Vz). (XI1.37) dty1-w/e?

0(710(2

(XII1.6)

and relativists claim that it is covariant undebRENTZ trans-
Conservation of momentum is expressed here by means of tiermations, such that it in the fran® it becomes:
vectorial equation: q »

f=m————. (XI11.7)
U U h dat’ —u2/c2
m <1+2> = (Vi +vaty). (X11.38) Vi-u®/c

ap az . . .
To examine covariance of the vector equation, (XI11.6), we

Taking coordinate axes in the plane determined by the vestart by considering its projection on teaxis:
locitiest; anduy, converts Eq. (XI1.38) to:

d Uy
fx=m - ———. (X111.8)
(le - DZX) - E2("1(30591—5—\2100392); dtVi-we/e
a2 ¢ Covariance of this equation requires:
me (Uly + UZV) = g(vlsinel+vzsin92)7(XII.39) ,
ap a2 ¢ fomd % (X111.9)
R TV TCyr

and one has three equations in the unknowns-, 6; and6,.

Thus, one of the photon’s directions remains undetermined. In | et us see, however, what the right side of Eq. (XII1.8) is

any case, however, the total radiation energy is given by Eczonverted into in fact unddrorRENTZ transformations. Such

(XI11.35). transformations introduce local tinté which is a ficticious
time defined by the equation:

Xlll. PLANCK'S EQUATION IS NOT COVARIANT. t=(t'+vX/c?)/a, (XI11.10)
TRANSFORMATION OF FORCE
from which one deduces:

NEWTON's dynamics is based on the equation: dt 1
] @:&(HV’(/CZ)' (XI11.11)
F:mj, (XN1.1) _ _ _ _
dt Thus, given an arbitrary functiogt), it follows that:
and, being subject to composition of vector velocities, one do  dodt o do

uses the transformation: (XI1.12)

dt  dtf dt  14+vu/c2dt’

On the other hand, frohORENTZ-EINSTEIN transforma-

= 3
U=0+v, (Xi.2) tion formulas, one deduces:
so that: Uy u;(_|_\/ (XI11.13)
da_ dof (XII1.3) VI-W@/E ay/I+vd/c? '
de  dt and by virtue of Eq. (XI11.12),
Moreover, mass is unaltered and one uses the same units in
the frameS as inS that is: d u 1 d U Ly d 1
N N a 2 - ﬂ @ /2 W /2
m=m; f=f; t=t, (XIIL.4) yi-g e 1-% Vite
(X111.14)
so that Eq. (XIIl.1) converts to: To determine the transformation of rest mass, we return to
Eq. (VI.17):
f = 30 XI5
T ar (XIIL.5) <m >=oa<n > between quantitites  (XIlI.15)

which means that this equation is covariant under Galilearfo go from an equation between quantities to one between
transformations, therefoldEWTON's dynamics may be clas- measurements, one must specify the units used in syStem
sified agrelativistic. In EINSTEIN's theory, it is tacitly taken that one employs a



kilogram that has been calibrated against a standaghind
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These formulas reveal, that in order to conserve covariance

then transfered t8. To transport this kilogram it is necessary of the fundamental equation &INSTEIN's dynamics, it is
to invest energy with its corresponding change of mass, suchecessary to introduce a new vecféiwhich, with an eye to

that, by virtue of Eq. (VI.17), one has:

1kg.in S=akg.inS, (XIN.16)

which means that a moving kilogram is less heavy than one at

rest.
Applying the Metric Principle, one has:
o<me> ., <m >
= 1kg.in S’ m = 1kg.in 8’ (Xin.17)
and with Egs. (VI.17) and (VI.21), results in:
my = m, between measurements (XI11.18)

its dimensional formula, can be called a force, and which is
defined by the identities:

b= gz (8 (&79);

a a
fy = /& ;; f,= mfz’. (X11.25)
According to these equations, measurement of riad
force f and measurement of tHeetitious force f, are dif-
ferent. Since the ratio§,/f, fy/f, andf,/f do not depend
solely onv, the difference can not be attributed to use of dis-
tinct units. Consequently, the fordé, defined by the identi-
ties Egs. (XIII.25), has nothing to do with the force measured

As one sees, the quantities are different, but the measurementith a dynamometer, and shows tleatvariance of the funda-
are equal because whatever alterations occur to the mass ofreental law of relativistic dynamics is obtained introducing a

body, also occur to the standard kilogram.

By multiplying Eq. (XIII.14) by Eq. (X111.18) we have on

account of Eq. (XI11.9), the result:

E Ux — 1 f’_’_n“vi#
™ Gt V1-u?/c? 14w /e \ X dt' \/1-u2/c2 )’
(XI.19)

The second term of this expression can be simplified. To d?h

so, expand the derivative:

41 1 dF

dt’ \/1—u?/c2  2c2(1—u?/c2)3/2 dt’’
and form the vectorial product

/ li 2

o —m <U,_d(u/a )> _ g L mdd

dt’ dt' o’ ' 20/ dt’’
(X111.21)

(XI11.20)

wherea’ = \/1—u?/c2,
Eliminatingdu?/dt’ in Eq. (XI11.21) using Eq. (XI11.20),
one obtains

d 1 1 -
with which, Eq. (XI11.19) becomes
d Ux B 1 r, Vo o
mrdt’,/l_uZ/c271+vu2/c2 (fX+c2f U)'

(XI11.23)

force which is nothing but a mathematical fictiomhus, we
have demonstrated, one more time, that covariance is not a
law of nature.

XIV. A CRITIQUE OF EINSTEIN'S REASONING

To develop a new dynamics we have taken a different route
an that followed in relativity texts. Nonetheless, Relativists
can not take objection to our reasoning, because we have
based our arguments on a fact that they expressly accept: i.e.,
to total energy there corresponds a mass giverMyc?. In

this way we have shown, that when there is no potential en-
ergy, the following law governs motion:

- d mi

from which it follows, that between a mass at rest and one in
motion, there exists the relationship:

m— " (XIV.2)

Nsrrara

which is valid only when the velocity results from forces
directly contacting the body and providing the necessary en-
ergy. Except for special cases, however, the preceeding for-
mulas generally are inapplicable, and one must take recourse
to the new dynamics. If, for example, the body moves unre-
strained in a force field, it must exhibit variable velocity; but,

if it has absorbed or emitted no energy, then its mass should
have remained constant. In other words, it is not velocity, but

For the other components, proceeding in an analogous Wa¥nergy that posses mass.

the results are

d Uy a p

fy=m— - f:
VI G TP L@
d U, a

(XI11.24)

f=m o - )
A T T AR RRVT

Our theory is an obvious contradiction to the theory of rel-
ativity, in so far as it implies acceptance of Egs. (XIV.1) and
(XIV.2), wherever there are forces changing the velocity. Let
us proceed now, to examine the reasoning used by Relativists,
in particular that oEINSTEIN.

To deduce the fundamental equation of relativistic dynam-
ics, consider along witlEINSTEIN 1905, 810) an electron
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that at timet = O is at the origin of a system of coordinates  Continuing,EINSTEIN stated: “The left sides constitute the
S, moving with velocityu along theX axis. Clearly this elec- components of ponderomotive force acting on the electron,
tron remains at rest with respect to a reference system movings would be observed from a system moving with the same
with the same velocity. Under these conditioBsySTEINac-  velocity v = u, at the considered instant (a force which, for
cepts thaNEWTON's Law is valid in reference syste®), and  example, may be measured with a spring dynamometer in this

writes: system).” With this argument he obtained the final equations:
- d2x my d2x m, d2y m, d?z
f=m—=. XIV. = —=— = -2 = — .
™ ae (XIV.3) k=g YT azae’ T eae  XV9)

Suppose further that a force arises from an electromagnetiand drew the conclusiqn that the longitudinal and transversal
field. For small values of, the velocity will differ but litle =~ masses equal, respectively:
from u, and we may take it that this electron is at rest’insg

that, seen from this reference system, it would be true that: m=3 (1— /)32’ m =2 1-Z/@)
_ dzx (XIV.10)
eE’ = m——, (XIV.4) As we have said, all relativists, in particuUBINSTEIN him-
dt self, are in agreement with Eq. (XIV.9), which may be sub-
whereeis the electron’s charge, taken to be inalterable. ~ Stituted for Plancks EQ. (XIII.1), and from which one may
For acceleration he used the relativistic transformation fordeduce, following the example of Eqs/I(1.4):
mulas. As at the instamt= 0, one hagsl’ = 0, this gives: m my
M= s M=o, (XIVAD)
d2x 1 d2x (1—-u?/c?) (1—u?/c?)
darz ~ o3 de’ which coincides with those given HyoRENTZ, but not with
d?y 1 d?y those ofEINSTEIN, as the values afy differ. This alone suf-
arz ~ ?W; fices to callEINSTEIN'S reasoning into doubt. But, moreover,
d27 1 d2z this also reveals objections that, to my judgment, totally inval-
— = — =, XIV.5 idate his reasoning.
dt’2 a? dt? ( ) g

EINSTEIN's argumentation is unacceptable because it con-

whereo — \/m is the contraction factor due to the siders that acceleration transforms according to the usual rel-

velocity v ~ u, which can be taken constant during very short2tVistic formulas, which, as we have repeatedly seen, must
intervals. be rejected because they presuppose the use of aberrant meter

For the intensity of the electric field&INSTEIN made use sticks and ,inappropriate clocks. On th? other hgnd, given that
of the formulas: MAXWELL’s equations must be covariant passing frérto
S, which compelled both introduction of the fictitious quan-
tities Ey, Ey andE}, and acceptance, that in a moving system,
the force acting on an electron is nigtbut anotherf’, defined
by Eqg. (XIV.4).

The errors we have noted are caused by contradictions. Itis

L, uB,). (xIV6)

1
Ex=Ex Ej= a(Ey—UBZ)J E, = o

Substituting Egs. (XIV.5) and (XIV.6) into (XIV.3), one

obtains: seen directly from Egs. (XI1V.4) and (XIV.6), for example, that
m d2x the ficticious forcef’ has to be different than the real for€e
e = ———; that is observed and measured by the dynamometer. Suppose,
as dt2 ; L = .
say, there is no magnetic field. Then,BEas 0, one has:
&(E,—UB) — m d?y
( y —Uu ) = FW’ F: eé7 (X|V12)
2
e(E;+uBy) = %3722 (XIV.7) while from Egs. (XIV.4) and (XIV.6) one deduces:
1 1
From these equations, which must be seen as valid in the fx=ek; fy= aeEy; f,= aeEZ; (XIV.13)

systemS if the reasoning behind them is correBINSTEIN

drew no conclusions. However, ignoring Egs. (XIV.6) andand so, as a consequenés . In spite of this, to obtain the
(XIV.7), and substituting (XIV.5) directly into (XIV.4), gives: fipal formula, namely Eq. (XIV.9)EINSTEIN takes it, with

perfect logic but with notorious inconsistency, that in reality

eE, = ﬁdix; there is only one force, i.e., that one which a field actually ex-
ad dt? ercises over an electron, say. On the other hand, there is no
oE my d?y_ reason to complicate the argumentation by introducing elec-
5 = @2’ tromagnetic fields, as it suffices simply to take it thiat f’
m d?z and substitute Eq. (XIV.5) into (XIV.3) in order to obtain the

eE, = rT (XIV.8)  final equation, Eqg. (XIV.9).



PLANCK considered the case in which the electron’s motion
is along theX axis. Then, Egs. (XIV.6) reduce f§, = E and
f=eE, f' = eE/, from which one deduces that= f/, that is,
in this particular case, no contradiction arrises. However, this
does not establish the general validity of Egs. (XIV.10). On
the other hand, let us take it that there is only one force, such
that its measurement dsand f’ are to be equal, it is, then,
necessary that i8 one is to use valid meter sticks and clocks
adjustable in such a way that they show universal time. Under
these conditions, the vectorial composition of velocities ob-
tains, and acceleration respects the relativistic formulas, Egs.
(XIV.5).

Finally, EINSTEIN as well asPLANCK analyzed the mo-
tion of a charge in an electromagnetic field, a case for which,
following our theory, Eq. (XIV.2) is not applicable; then, in
order, thafT + E, = const, and internal energy be fixed, the
total mass must equal:

1
m= mm+?(u +T+Ep) = const, (XIV.14)
a result independent of the velocity acquired through free mo-
tion in the field.

In short, the poorly posed relativistic Eq. (XIV.1), applica-
ble to contact forces, is a correct consequendd 8KWELL 'S
equations, as we have seen8 but, it is impossible to de-
rive it by means of relativity theory without incurring contra-
dictions.

XV. THE METHOD OF LEWIS AND TOLMAN

The notorious shortcomings in rigor th&INSTEIN in-
curred while modifying the fundamental law dbfewTON's
mechanics, has been, probably, the cause of the fact, that all
authors, with mild variations, follow the methods IbEwis
(1909) andToLMAN (1909), and (1934) to derive formulas
giving the variation of mass with velocity.

These two authors, having based their derivation on the
principle of relativity as applied to elastic shock interactions,
obtain correct results, and therefore are able to infer the funda-
mental law of the new theory as a consequendeiRETEIN'S
theory. But careful examination GfoLMAN'’s text from 1934,
shows that their development is not irreproachable. | quote:

In the first system of coordinate, for conve-
nience the primed systed, let the two parti-
cles be moving before collision with the veloci-
ties +U' and —u’ parallel to thex — axis in such
a way that a head-on encounter can occur. Since
by hypothesis the two particles are perfectly sim-
ilar and elastic, it is evident that they will first be
brought to rest on collision and then rebound un-
der the action of the elastic force developed, mov-
ing back over their original paths with the reverse
velocities—u’ and-+Uu’ of the same magnitude as
before but reversed in direction. In this system
of coordinates the collision is obviously such as
to satisfy the conservation laws of mass and mo-
mentum.
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Let us now change to a second system of
coordinatesS moving relative to the first in the
x— direction with velocityV. Using this new sys-
tem of coordinates, let us denote by and u,
the velocities of the two particles before colli-
sion, and allowing for the possibility that mass
may depend on velocity let us denote oy and
mp the masses of the two particles before colli-
sion. Furthermore, let us denote by the sum
of the masses of the two particles at the instant in
the course of the collision when they have come
to relative rest, and are hence both moving with
velocity +V with respect to out present system of
coordinatess.

In accordance with the conservation laws.
which must also hold in the new system of co-
ordinates, the total mass and total momentum of
the two particles must be the same before the col-
lision and at the moment of relative rest, so that
we can evidently write:

M +nmp =M, (XV.1)

and

MUy + Mpup = MV. (XV.2)

In addition, however, using the [transforma-
tion equations for velocities,] we can write for the
velocitiesu; anduy, in terms of their values-u’
and —u’ with respect to the original coordinates
S, the expressions:

U4V
C1-uVv/c

u+V

= Tyuv/@ and v

up (XV.3)
And by combining these three equations and
solving for the ration of the two masses, we easily
obtain:

m  1+uV/c?

= WS (XV.4)

which with the help of

[\/l—uz/czzl_lgl\\;j(;\/l—u/z/cz,] (XV.5)

gives us

m o \/1—u2/c?

= . (XV.6)
M 1—u3/c?

In accordance with this result the masses of

the two particles, which by hypothesis have the
same value, sayny, when at rest, become in-

versely proportional tq/1 — u2/c2 when moving
with velocity u, so that we may now write

m=__"0 (XV.7)

Niwara
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as the desired expression for the mass a mov- XVI. TRANSFORMATION RULES FOR MASS AND MOMENTUM
ing particle in terms of its velocity and mass at
restmg. In accord with our postulate of covariance, one can con-

_ sider that all physics equations conserve their form passing
The route followed byTOLMAN d|ﬁer§ fundamentally from  fom a system at rest to another inertial syst8mapplying
ours. In our theory, the equation which gives mass as a fungg, each quantity a particular transformation formula, which is
tion of veloplty is only valid in the absence of potential energy equivalent to saying, that covariance in not a law of nature,
and when internal energy is constant. In our case, to deduqg;; can be effected by introducing new variables, that can be
this relation we have applied the formuta, = \_N/C2 tothe  cajied ficticious because they differ from the real observables
particular case in which the ener§ly communicated to the g measurements. In the preceeding we have obtained trans-
body is converted completely to an increase of kinetic energyormation formulas for coordinates, time, velocities, acceler-

In our reasoning it is not necessary to invoke the principle oftions and forces. Now we shall seek the correspondences of
relativity. On the contrary, since the mass of a body is mini-555 energy and time.

mum whenu = 0, it provides a criterion to distinguish aframe  £qr mass we start with the equation
at absolute resg, from any other frame at all.
ToLMAN claimed to have deduced Eq. (XV.6) starting my

from the principle of relativity and took for granted that it is m= 11— u2/c2’ (XV1.1)
valid whatever the disposition of forces producing a change in
velocity. and we seek a new variabl®, such that

He took it in his argumentation that the collision under con-
sideration was perfectly symmetric with respect to a moving m = m . (XV1.2)
plane atX' = 0, which requires, evidently, that not only the V1-u2/c?
velocities of the particles are equal, but also their masses, that
is The measurement of rest mass, accordinglt®, is invari-

ant
Up=—U=U; m=m,. (XV.8)
my = ny. (XVL.3)

Without exception, and here is the contradictid@LMAN
assumes that both particles poses the same massyhen  The formula giving the contraction factor under transforma-
they remain at rest in systeB), which is in accord with Eq.  tjgn is:

(XV.5). From this, one deduces, that after the collision, the

masses, measured in the unitsSpéqual /1—Vv2/c2
ured i unitsSpéqu \/?2/(:2:17\//C [1-uw2/c2. (XV1.4)

1+, /c?
me ™™ g U/
\/1-u2/c2 \/1—u3/c? Substituting Egs. (XVI.3) and (XVI.4) into (XVI.1), gives
To change from measurements mad&io those made in _ m
S, one need only keep in mind that m= 7a\/m(l+v1&/c2)rr{, (XVL.5)
1kg.inS 1 1 : .
, = —— XV.10 thus, by virtue of Eqg. ( XVI.2):
1kg.inS /1-v/z o ( ) Y - )
1
to obtain m= a(1+Vl&/C2)ma (XV1.6)
mo_Mm_ a, (XV.11)  whichis the sought formula. One obtains the inverse formula,
LU L as always, by permuting the unprimed with primed symbols
that is and changing the sign of
m, — am, omy

= M=,  (XV12) I
J1- @/ J1-@e m =~ (1-vi/c)m (XV1.7)

Momentum is a secondary quantity;EHINSTEIN's dynam-

and since by virtue of Eq. (XV.3)1 # Uy, it follows ics it is defined by the identity:

m # My (XV.13)
=_md XV1.8
which is the contradiction with Eq. (XV.8). p= NI (XV1.8)
which, when projected on th¢ axis, becomes
4 ToLmAN, R. C.Relativity, Thermodynamics and Cosmold@gver, New px = _ Mk (XV1.9)

York, 1987 ) p. 43. - \/m
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The covariance of this expression is established by intro- a) The correct value af is obtained with corrected meter

ducing a new variable defined by

iy,

= . XVI.10
= e (XVI10)
While the formulas
_ Uy uw+v
= - , XVI.11
= V1i-w/ez \/1-u?/c? ( )
obtained ing§13, give:
/ /
_ LV mu (XVI.12)

o« J1I-uZj@

and requires only comparison with Eq. (XVI.10) to obtain

Px = é(l%—v/u;)p;. (XVI.13)

Analogously, for the other components, one obtains:

/

Py="py Pz=P, (XV1.14)

XVII. KINETIC AND TOTAL ENERGY

The kinetic energy of a body in motion is, by definition, the

sticks and chronometers that indicate universal time. Under
these conditions, velocities comport themselves as vectors, so
that one has:

U=v+, (XVI1.4)
or:

u? = u? +Vv2 + 2u'vcosd, (XVIL.5)
where @' is the angle betweed and V. In this way, Eq.
(XVI1.3) is converted into:

1 1
Ta=mc? -
\/1 _ u’2+v2+022u’vcose’ \/1 —V2/c?
(XVI1.6)

This expression, which is rigorously correct, indicates that
in the moving reference system the formula:

( me
T ‘(m”“?)’

is not valid, all of which shows, one more time, that the con-
cept of inertia for energy is in contradiction with the principle
of relativity.

b) According to relativists, to transform to a moving system

(XVIL.7)

work which is obtained through app"cation of the engender.pne must utilize th&t ORENTZ tl’a.nsformations. From them,
ing force, or what is the same, the heat produced by decelD turn, one deduces the f0||0WIng formula to transform the
eration. Above we have seen, that by virtue of the inertia ofontraction formula:

energy, the expression for kinetic energy in the new theory is

2
LAY (XVII.1)

\/1—u2/c2_

This formula is valid in a system at absolute rest. Let us
investigate how it would appear in an inertial system moving T.

with velocity v.

*/1*“2/@:1%(/@@7 (XVIL.8)
such that Eq. (XVII.3) becomes:
. mc? 1+vd/c?
S AeE\viwe 1]. (XVIL1.9)

Concerning T, it suffices to suppose that one uses a

calorimeter moving with velocity v, for which the body, af-

This formula, which seems to be acceptable for relativists

ter being restrained, still conserves the kinetic energy corré?€cause it was obtained USINgORENTZ transformations,

sponding to this velocity. That is,

T =T <\/% —m,c2> , (XVII.2)
or, by virtue of Eq. (XVII.1):
1 1
T, =mc? - , XVII.3
a=m <\/1—u2/02 \/1—v2/c2> ( )

where the subscrip indicates that for measurement ®f,
one has used appropriate energy units.
The measurement of velocity with respect to systerd

contains nevertheless a crass contradiction with the principle
of relativity, because

U, = U cosd’, (XVI1.10)
the energyl! measured with a calorimeter depends on the an-
gle ®. This means, that for measurements made in a moving
frame, space is not isotropic, because the direction of the ve-
locity is a privileged direction.

From Eq. (XVII.9) one deduces a new method to measure
absolute velocity in a laboratory. It suffices to meastmgith
clocks synchronized with light signals as if the velocity of
light were the same in all directions and without correcting
these measurements made with the standard meter. In this

depends on the meter sticks and clocks that are utilized in thiway, with energy measured with calorimeters, or its equiva-
system; and, one must consider, the following two importantent, Eq (XVII.9) permits calculating, as well as its direc-

cases:

tion.
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To conceal the failure of the principle of relativity, one must

introduce a new variabld,’, that makes Eq. (XVII.1) covari-

ant, that is, that transforms it into Eq. (XVI1.8). To this end,

we note that, when there is no force field, tio¢al energy

This transformation formula may always be applied, pro-
vided that one utilizes our principle of covariance.

W contained in a body and comprised of three parts: kinetic

energyT, internal energy) and that which comes from con-
version of matter into energy:

W=T+U +muc?=T+mc? (XVIL.11)
or, by virtue of Eq. (XVII.1):
__me (XVII.12)
V1-u?/c?
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