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It is generally accepted that the equation

mW = W/c2,

which relates the energyW with its massmW, is a consequence ofEINSTEIN’s theory. The author shows that this
equation may be obtained fromMAXWELL ’s equations without invoking the principle of relativity. The mass of
a moving particle, whose mass when at rest ismr , becomes

m= mr +T/c2.

From this equation, combined with the principle of conservation of energy,PLANCK ’s expression for the kinetic
energy

T =
mrc2

√
1−u2/c2

−mrc
2,

is obtained.
In a conservative field of force, the relativistic equation of motion

~f = mr
d
dt

~u√
1−u2/c2

,

cannot be applied. Instead, the principle of conservation of energy

d(T +Ep) = 0,

leads to the following equations of motion for electric, magnetic and gravitational fields respectively:

−Q(1−u2/c2)3/2∇Φ = mr
d~u
dt

;

Q(~u×~B) =
mr√

1−u2/c2

d~u
dt

;

−(1−u2/c2)3/2∇V =
d~u
dt

.

It follows from the last of these equations, that gravitational massmg and inertial mass mr of a moving particle
are related by

mg = G1/2(1−u2/c2)2/3mr .

Consequently, the equivalence postulate ofEINSTEIN’s theory of gravitation must be rejected.
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I. THE CONCEPTS OF MATTER: ENERGY AND MASS

One of the great achievements attributable toMAXWELL ’s
theory of electrodynamics consists in having made it possible
to foresee that energy posses inertial mass; that is, it is nec-
essary only to convey energy to a material body in order to
augment its mass. Thus, one can not say that the mass of a
body is an invariant quantity or characteristic of it; and there-
fore, it follows that the concepts behind NEWTONian laws of
mechanics must be amended.

By means of contemplation of all that which surrounds us,
practitioners of Physics have elaborated two concepts: matter
and energy, corresponding to the entities seemingly responsi-
ble for sensual perceptions. For a projectile, for example, one
distinguishes the material from which it is made, lead or steel,
say, on the one hand, and the energy it posses by virtue of its
motion, its location in a gravitational field and its temperature
acquired by friction with air.

Classical Physics is based on a clear distinction between
matter and energy. It is believed, that this distinction is rooted
in the fact that matter is inert and ponderous, while energy
is supposed to be exempted from inertia and weight. Because
this is in fact not so, however, it becomes necessary to identify
other distinguishing features. The purpose of Physics is not to
determine the essence of the entities with which it operates.
Rather, for its purposes, the following definitions suffice:

The energy of a closed system is its capacity to do work on
other objects.

The matter of a closed system is that which remains when it
is exhausted of all its energy.

Another common concept needing a precise definition, is
‘mass’, in particular as in the vernacular mass is conflated with
matter, and in works on Relativity it is held that mass can be
converted into energy, andvisa versa,an assertion which, as
we shall show, is inadmissible.

NEWTON introduced inertial mass into Physics, but he did
not specify exhaustively the significance of this important
quantity.ERNST MACH in his work from 1927, gave a defini-
tion that, with more or less arbitrary variations, can be found
in many physics books.MACH is one of the founders of mod-
ern philosophical positivism of the Vienna school; he sup-
poses that his definition is purely operational. But, asMAR-
GENAU has noted, it actually constitutes a curious mix of epis-
temological and tautological elements. MACH’s definition, re-
duced to its operational elements, would be: Take bodyA as
the unit mass. Consider that by whatever means it effects an
attraction on another bodyB, in such a way that starting from
rest, both bodies undertake movement; such as can be realized
by a spring or electric charges, say. If, now,aA andaB are their
respective accelerations as measured simultaneously, then the
mass ofB equalsaA/aB.

For MACH’s definition to be acceptable, it is necessary that
the cause of the accelerations between these two bodies re-
main constant throughout the motion (for example, the elastic
force from a spring). This hypothesis, which indisputably un-
derpinsNEWTON’s mechanics, is actually unacceptable, and
this suffices to rejectMACH’ s definition.

Many authors, includingEINSTEIN, define mass as the quo-

tient of force by acceleration, without note of the fact, that
with this definition mass loses its rank as a primary quantity,
because this formulation ignores the possibility of determin-
ing its value by measuring other quantitates. For this reason,
inter alia, EINSTEIN came to the misguided conclusion, that
there are two types of mass: longitudinal and transversal, and
thereby obtained an unacceptable formulation.

The objection we have made toMACH’s definition is ap-
plicable to all operational definitions when they refer to pri-
mary quantities. In each case they introduce some implicit
or tacit tautological aspect, that is, the definition depends
on an implicit unenunciated law. In the end, this matter is
so convoluted, thatLENZEN (1931), after having studied it
throughly, ordained the method of “successive definitions”. It
begins with abstract concepts, then proceeds to the discovery
of laws, with the help of which these concepts are redefined
with greater precision, with which, finally, one again reinter-
prets the primary concepts.

In my view of these matters, and in accord with my book
Dimensional Analysis,one should start by giving a qualitative
definition of each quantity, and then define the means of mea-
surement, and give criteria for equality and sums thereof. For
inertial mass the qualitative definition is as follows:

Inertial mass is that quantity for which a force is required
to change its motion.

The criterion of equality is derived from this definition; it is
obvious that two bodies have equal inertial masses when they
respond the same to equal forces. To establish the criterion of
summation, it suffices to admit that masses sum by accumula-
tion such that if a mass isn times larger than another, when it
behaves as if it were the sum ofn times the first.

If one considers that primary quantities are those for which
it is possible to establish criteria of equality and summation,
then mass is a primary quantity.

II. THE INERTIA OF ENERGY

As is frequently the case in the history of science, many
various researchers contributed to the discovery that energy
posses mass.

THOMPSON (1881) published a series of papers based
on the study of MAXWELL ian electrodynamics, which sub-
sequently were discussed byFITZ-GERALD, HEAVISIDE,
SEARLE, MORTON, etc.1 As a result of all of this,THOMP-
SON reached the conclusion that a charged conducting sphere,
moving along a straight line, would experience an increase in
mass per:

4m=
4
3

W/c2, (II.1)

whereW is the electrostatic energy of the charge, which is, as
is well known, equal to the energy invested in transferring the

1 WHITTAKER (1951, p. 306) presents a complete survey of these papers.
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chargeQ to the sphere:

W =
1
2

Q2

C
=

Q2

4πεr
, (II.2)

whereC is capacitance andε is the permittivity or dielectric
constant of the vacuum.2

POINCARÉ (1904) opined that in vacuo the momentum of
electromagnetic waves equals the flux of thePOYNTING vec-
tor times the factor1/c2. This suggests, that an electromag-
netic field for each unit of volume would have a mass equal
to the product of energy density times the same factor, with
which, in place of Eq. (II.1), one gets:

4m= W/c2. (II.3)

This expression predicts, that anHERTZian oscillator emitting
radiation in a particular direction, must recoil for the same
reason that firearms do so.

The problem that concerns us here, also interested
HASENHÖRL, who usedMAXWELL ’s theory to study the
comportment of a box with reflecting walls containing radi-
ation and moving with uniform velocity. He deduced, that it
is necessary to attribute to radiation a mass given by:

m= kW/c2, (II.4)

wherek is a factor that he first estimated to be8/3 (1904), but
later, (1905), corrected to4/3, a value in accord withTHOMP-
SON’s result.

In view of all these works, it must be said for certain that
MAXWELL ’s theory of electromagnetism leads to Eq. (II.4),
with only the value ofk remaining dubious. Experimental
experience supports this formula, albeit, not directly. Such
confirmation was provided byKAUFMANN (1901). By mea-
surements of the deviation ofβ-rays (electrons) emitted by
various radioactive substances, he observed that they exhib-
ited an apparent increase in mass given by:

m=
mr√

1−u2/c2
, (II.5)

wheremr is their mass whenu= 0, i.e., when at rest. From Eq.
(II.5), one deduces that an electron experiences an increase in
mass:

4m= m−mr = mr

(
1√

1−u2/c2
−1

)
, (II.6)

which, can be seen, is just equal to the kinetic energyT, di-
vided byc2. As a consequence:

4m= T/c2, (II.7)

2 FERMI (1922), noted that, in addition to the electrostatic energy, if account
is taken of the stress in the sphere, then the mass differential is:4m =
W/c2.

wherek= 1. Subsequent measurements have confirmed indis-
putably the validity of Eq. (II.5). This, in turn permits the con-
clusion that it is necessary to attribute inertia to electromag-
netic energy, a major contribution of pre-relativistic Physics.

This was the situation whenEINSTEIN (1905, p. 589) pub-
lished his celebrated article:Ist die Tr̈agheit eines K̈orpers
von seiner Energieinhalt abhängig? (Does the inertia of a
body depend on its energy?), in which, he posited the in-
controvertibility of the principle of relativity, Eq. (II.4) with
k = 1, and the claim that this is true whatever the form of en-
ergy. Thereafter, all have believed, including myself, that the
formula:

mW = W/c2, (II.8)

where the massmW corresponds to energyW, is due to
EINSTEIN, i.e., that it is a consequence of his theory, not
MAXWELL ’s, which has justified labeling itEinstein’s for-
mula.

The difficulty, however, of reconciling Eq. (II.8) with the
principle of relativity springs into view, as by virtue of this
formula, the state of absolute rest can be distinguished from
any other, in that, for it, a body has an absolute minimal mass.
It seems then, thatEINSTEIN has fallen into some kind of er-
ror, and, in effect, asIVES (1952) proffered, his reasoning is
false, because it assumes that which it strives to demonstrate.

I shall explicate a very sensible method that allows the
derivation of Eq. (II.8) as a consequence ofMAXWELL ’s the-
ory without the necessity to call on the principle of relativity.
In the following, it will be demonstrated that Eq. (II.8) and
the principle of relativity are in fact incompatible.

Consider a plane wave train. FromMAXWELL ’s theory we
know that the vectors~E and~H are orthogonal and satisfy:

~H =
√

ε0

µ0

~E. (II.9)

Furthermore, both vectors are perpendicular to the propaga-
tion velocityc , such that taken in the orderc, ~E, ~H they form
a righthanded triad, see Fig. (1).

Suppose that this wave train perpendicularly impacts a con-
ducting wall. The electromagnetic field induces currents in the
wall, which, because they are immersed in these very waves,
are subject to forces putting the wall itself into motion. If the
system comprising the wave train and wall contained no mass
but that of the wall, then internal forces would have put the
center of mass in motion, which is a contradiction with the
principle of inertia.

The reasoning presented above shows that it is necessary
to attribute a massmW to waves that must depend on their
energyW, their frequencyν and the vacuum constantsε0 and
µ0. With these quantities, one can form only one monomial of
dimension zero in which the frequency does not appear:

mW

ε0µ0W
. (II.10)

From this result, by virtue of theπ-theorem of Dimensional
Analysis, there exists a relationship among these quantities of
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FIG. 1 A demonstration that waves posses mass

the form:

mW = kW/c2, (II.11)

wherek is a fixed number.
To find the value ofk it is sufficient to consider a partic-

ular case, for example, the case in which the waves are to-
tally absorbed by the wall, such that there is no reflection
or tranmission. Arranging the axes as depicted in Fig. (1),
givesHx = Hy = 0, or Hz = H. Furthermore, if the wall is a
conductor, the vectors~E and~D must be absolutely null, and
MAXWELL ’s equation:

∇× ~H =~i +
∂Hx

∂x
, (II.12)

becomes:

ix = iz = 0, ix =−∂Hx

∂x
. (II.13)

The result then, is an alternating current on theY axis. To
find its intensity, we applySTOKE’s Theorem to a circuit that
encloses the wall, such asABCD. SinceHx = 0 and there is
no reflection or transmission, one obtains~H multiplied by the
length,a, of sideAB:

~I = a~H. (II.14)

The force that the field exercises on the wall then equals:

~f = b~I ×~B = µ0~I × ~H, (II.15)

whereb is the thickness of the wall. As~I and~H are perpen-
dicular, this gives in view of Eq. (II.14), a force in the positive
X direction:

f = µ0abH2 = µ0AH2, (II.16)

whereA= ab is the area of a cross section of the wall. In view
of Eq. (II.9), Eq. (II.15) can be written:

~f =
√

µ0ε0A~H×~E =
1
c

A~S, (II.17)

where~S is POYNTING’s vector. From this, we see that in the
time intervaldt the wall receives an impulse:

f dt =
1
c

ASdt= dW/c, (II.18)

wheredW is the energy deposited in the wall in the interval
dt.

Suppose we consider the wall at rest before the arrival of the
wave train, and letdube the velocity acquired by virtue of the
impulse f dt. To calculate this velocity we call onNEWTON’s
Law written in the form

f dt = d(Mu), (II.19)

whereM is the mass of the wall, which is converted intoM +
dmW, when it adsorbs energyW. Eliminating f dt between
Eqs. (II.18) and (II.19) gives:

dW
c

= Mdu+udM= Mdu, (II.20)

asu = 0. Thus,

du=
dW
Mc

. (II.21)

Applying now the principle of inertia, which requires that
there be no forces exterior to the system comprising wave
train and wall, implies conservation of motion of the center
of mass. Because before the impact of the wave train,dmW
corresponded to the energydW, which moves with the veloc-
ity c, and after the impactM +dmW has acquired the velocity
du, it follows:

cdmu

M +dmM
= du=

dW
Mc

, (II.22)

or, sinceM is a finite mass:

dmW = dW/c2, (II.23)

The above analysis demonstrates directly that electromag-
netic waves have mass; but, the principle of inertia requires
that Eq. (II.23) be applicable to all forms of energy. In effect,
the system is a vessel that contains electromagnetic waves
and moves with velocityu. Suppose that, without leaving the
vessel, the energy of the waves is transformed into another
species of energy. FollowingGALILEO ’s Principle, the veloc-
ity must remain constant. On the other hand,NEWTON’s Law,
written in the form:

f dt = d(mu), (II.24)

requiresmu= const. because there are no exterior forces. As a
consequence, the new species of energy must posses the same
massmW, as possessed by the energyW of the waves.

The total mass of a body comprises the sum of material
mass, or ‘proper mass’,mm, and its ‘energetic mass’,mW:

m= mm+mW = mm+W/c2. (II.25)

In turn, the energetic mass is obtained by summing different
forms of energy: internalU , kineticT and potentialEv:

m= mm+
1
c2 (U +T +Ev). (II.26)
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In the absence of potential energy, and when the body is
motionless, one has the ‘rest mass’:

mr = mm+U/c2. (II.27)

Tables give the rest masses of elementary particles and
atomic nuclei. One must admit that stabile particles in a nor-
mal state, that is, when they are unexcited, lack internal en-
ergy. In contrast, one must attribute a certain internal energy
to excited atoms and radioactive bodies, energy that can be
liberated in the emission and transformation processes. Thus,
atoms have a greater energy when excited than when in their
normal state, and radioactive transmutation results in a lower
mass than that of the primary particle.

To electrically charge a body, it is necessary to expend en-
ergy which is then stored in it. It is to be expected, therefore,
that a charged body has more mass than an uncharged body.
Confirmation of this expectation occurs for each of the mesons
π+ andπ−, for which the mass is 273 times greater than that
of the electron while the neutralπ0 is only 264 times greater.
That is, there is a difference of:

4m= 9me = 9×9.1091×10−25kg., (II.28)

which corresponds to the stored energy of the charge.
The constantc has a double character. For space, it is the

measured velocity of light in vacuum with respect to a system
at absolute rest. From this point of view it may be considered
a constant characteristic of the aether, for which the value de-
pends on the circumstances that modify its index of refraction,
depending on gravitation. However, in view of the formula:

4W = c24m, (II.29)

the referenced constant acquires the status of an ineluctable
universal constant, embellished with abundant bombast, not
only in optics, but throughout Physics. To measurec2 it is
not necessary to use meter sticks and clocks. Rather, a direct
measurement of the augmentation4m of mass (or weight) a
body exhibits whenever it communicates, in whatever form,
an amount of energy4W, for example as heat. Such a mea-
surement which depends in no way on the structure of aether,
figures into the factor

√
1−v2/c2 and, as with all universal

constants, depends on the system of units.

III. CONSERVATION PRINCIPLES

The Inertia of Energy Principle obliges us to reformulate
the two conservation principles, that for mass and for energy.
As new formulations, as presented in many works, suffer tor-
tured interpretations, it behooves us to examine this matter
with all thoroughness.

A. Conservation of Mass.

Consider a system of bodies which is subjected to a trans-
formation as a consequence of the exit from the system of a
certain amount of energyW. If ma andmd are the total masses

before and after the transformation, and in so far as the en-
ergyW can be assigned the massmW = W/c2, the Principle
of Mass Conservation can be expressed as:

ma = md +mW, (III.1)

such that one can not claim, as was done duringLAVOISIER’s
time, that the mass of the system is held constant permanently.
On the other hand, the total mass of the Universe does not
vary, as losses suffered by any subsystem are gains in another.

Eq. (III.1) written in the form:

ma−md = W/c2, (III.2)

is interpreted by many authors, for example byEINSTEIN, as
if mass had been converted to energy, and thereby claim that
mass and energy are equivalent quantities. This manner of
speaking seems quite cavalier. Mass is neither matter nor en-
ergy, rather an attribute common to all species of matter and
forms of energy. To claim that mass and energy are equiva-
lent entities, is to confuse an object with its properties, with
its volume, say. Finally, for an entity to transform into some-
thing else, it must cease to be that which it was and acquire a
new sort of existence. What happens really is, that the energy
W, found in a system in one or another form, is carried with
it, to be expelled as massW/c2.

Heat and mechanical work can be said to be equivalent
forms of energy as one can be converted into the other. Thus
one attributes the same dimensional formulas to each and
measures them in terms of the same units in all coherent sys-
tems. Mass and energy, contrariwise, are quantities in dis-
tinct classes, their dimensional formulas are different and each
posses its own peculiar units in coherent systems, for example
the kilogram and the Joule in theGIORGI system of units. It
is, therefore, nonsense to say the energy transforms into mass
and that they are equivalent entities.

In accord with the notions explicated in my bookDimen-
sional Analysis,energy and mass are to be considered as
“inseparable quantities”, because between these two entities
there is an ineluctable constant, which turns out to be1/c2.

The new dynamics follows rigorously the Conservation of
Mass Principle, expressed as

∑mm+∑mW = const., (III.3)

where∑mm is the sum of all particle masses comprising the
system, and

∑mW = ∑W
c2 , (III.4)

is the mass corresponding to the total energy content in the
system. Thus, for all transformations that take place in a
closed system, that is one for which no material particles nor
energy would cross an enclosing surface, comply with:

(∑mm+∑W/c2)a = (∑mm+∑W/c2)d. (III.5)

So, for example, the weight of all mass losses in a nuclear
reactor and the total mass—and its weight—of uranium, re-
mains constant if the system is enveloped in a container that
allows no radiation or particles to escape.
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B. Conservation of matter and energy

According to Classical Physics it is a certainty that mat-
ter is indestructible, which was verified in the most violent
of chemical reactions, even with large energy dissipation, by
LAVOISIER who showed that the weight of bodies entering a
reaction equaled the weight of those emerging. As matter can
be measured by one of its attributes, and has the advantage
of being independent of external circumstances, i.e., pressure
and temperature, the principle of Conservation of matter can
be expressed as:

(∑mm)a = (∑mm)d. (III.6)

Likewise, Classical Physics admits the Principle of Conser-
vation of Energy:

∑(U +T +Ep) = const., (III.7)

whereU , T andEp represent internal, kinetic and potential
energy respectively.

In the new dynamics, we abandon certitude in the sepa-
ration of Eqs. (III.6) and (III.7) and, in its place, take Eq.
(III.5), which is the sum of the two after dividing the second
by c2. Maybe this is the reason that relativists claim, thanks
to EINSTEIN, that two conservation principles from Classical
Physics, i.e., that for matter and energy, can be melded into a
single principle:

mass= energy= const.. (III.8)

This assertion is inadmissible, however, because one can not
add mass with energy without violating the Principle of Ho-
mogeneity. Eq. (III.5), which is correct, makes manifest, that
that which is to be added, is the mass equivalent of matter
to the mass equivalent of energy. The factorc−2, which is
ineluctable, has as its mission to save the Principle of Homo-
geneity.

As for attempted fusions of the two principles, one can
claim that while atomic nuclei remain unaffected, matter is
conserved and Eqs. (III.6) and (III.7) are executed separately,
as a consequence of Eq. (III.5), but not the reverse. Otherwise
when there is change in an atomic nucleus, as happens by ra-
dioactive decay, each principle contributes independently to
the transformation.

In radioactive transformations, large quantitates of energy
are liberated as kinetic energy of decay products or as pure
energy in the form of photons. One may plausibly suppose
that the instability of a radioactive nucleus, or in general of
fundamental particles, is due to stored internal energyU . For
this reason it is not possible to confirm Eq. (III.6) directly,
since that which is measured experimentally with a spectrom-
eter, isrest mass:

mr = mm+U/c2; (III.9)

and, as is verified experimentally, liberated energyW is given
by:

(mr)a− (∑mr)d = W/c2, (III.10)

or, by virtue of Eq. (III.9):

(mm+U/c2)a− (∑mm+U/c2) = W/c2. (III.11)

The preceeding equations do not allow one to decide
whether matter is conserved or not, but seem logically to im-
ply that the total liberated energy is provided by internal en-
ergy:

W = Ua−Ud (III.12)

with which, and with Eq. (III.11), one deduces:

(mm)a = (∑mm)d. (III.13)

It is in this sense, that the separation of the two conservation
principles subsists, and thanks to this separation one can talk
of energy levels in atoms and characterize them by their par-
ticular internal energy. As one sees, spontaneous radioactiv-
ity, uniquely recognized whenEINSTEIN elucidated his the-
ory, doesn’t permit one to claim that there is a fusion of the
principles of conservation of mass and energy. We shall see,
that without exception, discoveries made subsequently oblige
us to claim that matter (not mass) can be transformed into
energy andvisa versa, and that these transformations are reg-
ulated by a principle expressible as:

matter+energy= const. (III.14)

As in these phenomena matter has to vanish, it is not possi-
ble to satisfy Eq. (III.13), and even less to satisfy Eq. (III.11)
because the energy is released not from internal energy, but
from the annihilation of matter. By contrast, Eq. (III.5) is
satisfied, which can be expressed saying that the principles of
conservation of matter and energy are fundamentally unified.

IV. RECIPROCAL TRANSFORMATION OF MATTER AND
ENERGY

Phenomena mentioned in the preceeding sections consist of
the production of twined particles (electron-positron, proton-
antiproton, neutron-antineutron) by means of the consumption
of the energy of a photon. And, the inverse phenomenon, that
is, the mutual destruction of twined particles, results in the
production of energetic radiation.

In this phenomenon, total mass is conserved, as what is lost
in proper mass, is gained in radiation mass. Conservation of
total mass subsists then, as expressed bymd = ma. Since:

ma = mm1 +mm2 +
1
c2 (T1 +T2); md = W/c2, (IV.1)

giving:

W/c2 = mm1 +mm2 +
1
c2 (T1 +T2). (IV.2)

Positing that matter has been transformed into energy, is to
abandon the validity of conservation principles. One cannot,
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without exception, say that a single principle is united into
conservation of mass and energy, when what has happened is
the first is satisfied and not the second. On the other hand,
Eq. (IV.2) suffices to resolve problems of examining energy
W that is liberated by mutual annihilation of two particles,
and still constrained by the conservation of momentum, as we
shall see below.

The reciprocal transformation of matter into energy is a
process comparable to the conversion of heat into work. In
both cases it has to do with quantitates that transform one into
another, such that there is a proportionality between the two
quantitates. In thermodynamics one encounters aprinciple of
equivalenceby virtue of which heat,Q, is absorbed in a cyclic
transformation and work,W, is done on bodies exterior to the
system according to the equation:

W = JQ, (IV.3)

whereinJ is a universal constant.
Analogously, the transformation of matter into energy

obeys a principle of proportionality between quantitates that,
with one or another magnitude, are involved in the considered
phenomenon:

a quantity of matter∼ a quantity of energy. (IV.4)

Quantities of matter can be measured by various means, for
example, for weight or for volume occupied under specified
conditions. For our purposes, the most convenient measure-
ment is that of proper mass, for which the the proportionality
(IV.4) becomes:

mm = kW, (IV.5)

where the constant equalsk = 1/c2, if one uses a coherent
system of units.

To clarify these notions, consider the nuclear reaction

Li6(n, γ)→ Li7.

Since all the particles involved in this process are stable, we
dispense with changes in internal energy, as well as others that
are not involved, like gravitational energy, so that:

m= mm+T/c2. (IV.6)

Proper masses have been determined using a mass spec-
trograph, and taking the unit of mass to beum = 1,661×
10−21gr., yields the values:

mm(Li6) = 6.01697;
mm(n) = 1.00893;

mm(Li7) = 7.01822.
(IV.7)

Supposing that the kinetic energy of the impinging neutron
is negligible with respect to the lithium nucleus, Eq. (III.1).
which expresses the conservation of total mass, becomes:

mm(Li6)+mm(n) = mm(Li7)+
1
c2 (T +W), (IV.8)

whereT is the kinetic energy of(Li7), andW the photon en-
ergy.

Conservation of energy, expressed by Eq. (III.7) leads to:

T =−W, (IV.9)

and in that this equation appears compatible with Eq. (IV.8)
one has compatability with Eq. (III.6), that is, there must be
conservation of proper mass. But, per the previous numerical
results, there was a loss of proper mass given by:

4mm =−0.00768mn =−1.276×10−26g, (IV.10)

so that, therefore, Eqs. (IV.8) and (IV.9) are incompatible.
Lose of proper mass indicates that a portion of matter was

transformed into energy, so that Eqs. (III.7) and (IV.9) are not
applicable. In its place one must use the principle of equiva-
lence of matter and energy, that is:

−4mm = (T +W)/c2, (IV.11)

which gives:

T +W = 1.276×10−26 ·9×1020 = 1.148×10−5erg.

= 6.20MeV. (IV.12)

This energy is distrubuted among the lithium atoms and
photons. To determine the part that corresponds to each, one
must apply the principle of conservation of momentum, the
result shows that the portion in the lithium atoms is negligi-
ble.

V. THE NEW DYNAMICS’ FUNDAMENTAL LAW

POINCARÉ (1904) has noticed that it is necessary to change
NEWTON’s Law:

~f dt = md~u, (V.1)

so that it can take account of the finite velocity of light. To
convince oneself of the necessity to make such a modifica-
tion, one need only consider the case whenu > c, as then the
factor

√
1−u2/c2 becomes imaginary, which signifies that a

moving body at this velocity loses real existence.
In the theory of relativity one substitutes for Eq. (V.1) the

following:

~f = mm
d
dt

~u√
1−u2/c2

, (V.2)

and takes it that this is applicable whatever the nature of the
force. We propose to examine the reasoning behind this equa-
tion to show that it pertains to contact forces such as elastic
collisions and shock due to wave impact, but not to forces act-
ing at a distance, e.g., from electric and magnetic fields.

LORENTZ (1916) studied theoretically the motion of an
electron in an electromagnetic field and deduced that with in-
crease of velocity there is an increase of mass up to infinity
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whenu= c, and giving the remarkable circumstance, that it is
also necessary to distinguish betweenlongitudinalmass:

m′ =
mr

(1−u2c2)3/2
, (V.3)

valid when the force is parallel to the velocity, andtranverse
mass:

m′′ =
mr

(1−u2/c2)1/2
, (V.4)

valid when the force is perpendicular to the instantaneous ve-
locity of the body.

EINSTEIN (1915), claiming he did not know ofLORENTZ’ s
works, studied the same motion of a charge in an electromag-
netic field, and applied the principle of relativity. He con-
cluded thatNEWTON’s equation, (V.1), should be replaced by:

f =
mr

(1−u2/c2)3/2

du
dt

, f , anduparallel, (V.5)

f =
mr

(1−u2/c2)
du
dt

, ( f , anduperpendicular). (V.6)

Note thatEINSTEIN obtained the same expression for lon-
gitudinal mass as didLORENTZ, but not for tranverse mass.

EINSTEIN’s equations have the defect of being applicable
only when time intervals are infinitesimally small, and then
only in the particular case in which the force is constantly nor-
mal to, or parallel to the trajectory; in fact however, generally
the angle between force and velocity is constantly changing.

PLANCK (1906) correctly gave the fundamental equation
the form (V.2) for which it is not necessary to distinguish be-
tween longitudinal and transverse mass. This equation is ac-
cepted unanimously, and he is justifiably considered a great
German savant as founder of relativistic mechanics. However,
PLANCK deduced his equation based on the Principle of Rel-
ativity, so that all merit is attributed toEINSTEIN. We shall
show that it is possible to derive Eq. (V.2) just by taking into
account the inertia of energy, such that it is unnecessary to
consider the Principle of Relativity. Further on we shall show
even that Eq. (V.2) is actually incompatible with this princi-
ple.

VI. DERIVATION OF PLANCK’S LAW

We accept the validity ofNEWTON’s Law written in the
form:

~f dt = d(m~u), (VI.1)

and that the total mass of a body, instead of being constant as
in classical dynamics, depends on the energy according to the
formula:

m= mm+(U +T +Ep)/c2 (VI.2)

which we obtained in§2 as a consequence ofMAXWELL ’s
theory.

To deduce the new law, we begin by supposing that there
is no action-at-a-distance (fields) and that movement results
from contact forces, likewise for those due to pressure exer-
cised over the body in motion by external bodies. We also
take it that internal energy is unaltered by motion. Under these
conditionsEp = 0, and Eq. (VI.1) converts to:

m= mr +T/c2, (VI.3)

where

mr = mm+U/c2. (VI.4)

The principle of energy conservation requires that all work
done by these forces is transformed into kinetic energy:

~f ·d~l = dT. (VI.5)

On the other hand, Eq. (VI.1):

~f =
d(m~u)

dt
, (VI.6)

substituted into Eq. (VI.5), gives:

~u ·d(m~u) = dT, (VI.7)

or

1
2

mdu2 +u2dm= dT. (VI.8)

Replacingmby its value, Eq. (VI.3), yields:

1
2
(mr +T/c2)du2 +

u2

c2 dT = dT, (VI.9)

so that separating variables leads to:

dT
mr +T/c2 =

du2

1−u2/c2 . (VI.10)

Integrating with initial conditionsT = 0 for u = 0, results in:

c2 ln
mr

mr +T/c2 =−c2

2
ln(1−u2/c2), (VI.11)

or rearranged:

m= mr +T/c2 = mr/
√

1−u2/c2, (VI.12)

from which one need only substitute into Eq. (VI.1) to get
PLANCK ’s equation:

~f dt = mr
d
dt

~u√
1−u2/c2

. (VI.13)

Solving forT in Eq. (VI.12) one obtains for kinetic energy
the value:

T = mrc
2

(
1√

1−u2/c2
−1

)
. (VI.14)
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Expanding this in a series of powers ofu/c, gives one:

T = mrc
2
(

1
2

u2

c2 +
3
8

u4

c4 + · · ·
)

, (VI.15)

so that for velocities much less than that of light, the result is
the same as in classical dynamics.

The symbolsm and mr represent measurements obtained
with the same units, the kilogram inS. In these conditions,
the Metric Principle :

quantity= measurement×unit,

says that the measurements are proportional to their respective
quantities, from which by Eq. (VI.12) one deduces:

< m>=< mr > /
√

1−u2/c2; between quantitites,
(VI.16)

and, as a consequence,to transfer to a body the energy nec-
essary for it to move with velocityu, its mass must be divided
by the factor

√
1−u2/c2, which is less that unity. In particu-

lar, to transfer a body from the system at restS, to the moving
reference systemS′, so that it is fixed in it, i.e.,u = v, and Eq.
(VI.16) becomes:

< m′
r >=< m′

r > /α. (VI.17)

Momentum (once know as thequantity of motion) is de-
fined by the identity:

~p≡m~u, (VI.18)

and, therefore, is asecondary quantityintroduced with no
more purpose than to abbreviate terminology. With its aid,
the fundamental law can be stated as:momentum equals the
change produced by impulse:

~f dt = d~p. (VI.19)

In a system comprised of multiple bodies, with no forces
but those between these bodies, which are always parallel,
equal and opposed, the overall sum is null so thatin a sys-
tem free of external forces, the total momentum is constant.

In NEWTONian mechanics one must take it that mass is
constant. In the new dynamics one must take it that mass
varies with the body’s stored energy. Thus, momentum is not
simply proportional to velocity, as the proportionality factor is
variable. In absence of action-at-a-distance, for example, Eq.
(VI.14) is valid, and by comparison with Eq. (VI.16) gives
momentum the form:

~p =
mr~u√

1−u2/c2
. (VI.20)

The quantity defined by:

mmov. =
mr√

1−u2/c2
, (VI.21)

is denotedmass in motion.

The velocity a body acquires when augmented with energy
W converted completely into kinetic energy, is obtained when
T = W in Eq. (VI.13) which when solved foru yields:

u2

c2 = 1− 1
1−W/(mrc2)2 , (VI.22)

from which one deduces thatu = c for W = ∞. This explains
why it is impossible to obtainvelocitiesgreater than light, as
the total energy in the universe is insufficient toachieve this
velocity for even the smallest particle.

As a function of kinetic energy, momentum equals:

p = mrc
√

(1+T/(mrc2))2−1. (VI.23)

VII. MOVEMENT OF A PARTICLE SUBJECTED TO A CONSTANT
CONTACT FORCE

As an example, let us find the equation of motion for a
body subjected to a constant contact force. Suppose that this
body starts out at rest and moves along theX axis; integrating
PLANCK ’s equation leads to:

gt =
u√

1−u2/c2
, (VII.1)

whereg = f/m, is the force per unit mass. The velocity in-
crease per unit time equals

u =
gt√

1+g2t2/c2
, (VII.2)

which does not increase proportionally to time, but ever more
slowly, tending to the limitc as time proceeds.

The distance traveled equals:

x =
Z t

0
udt = g

Z t

0

dt√
1+g2t2/c2

, (VII.3)

or:

x =
c2

g
(
√

1+g2t2/c2−1). (VII.4)

Whengt is negligible in comparison toc, this expression
reduces to:

u = gt, x =
1
2

gt2, (VII.5)

which are the classical results for uniform acceleration.

VIII. MASS AS A TENSOR

With the form given byPLANCK to the fundamental equa-
tion, the conceptions of longitudinal and transverse mass, in-
troduced primarily byLORENTZ, but later taken up again by
EINSTEIN, have been rendered superfluous. In their place,
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rest massmr , for which the value is constant so long as in-
ternal energy is constant, plays a role. In many books, even
in elementary treatises, one talks still as if longitudinal and
transverse masses were cherished acquisitions from relativity
theory. It behooves us, therefore, to focus on this matter.

The force~f applied to a body and the acceleration~a which
it evokes are coexistent vectors, that, in general, have different
directions. One may, therefore, write:

~f ≡M~a, (VIII.1)

whereM is a tensor. This expression is not a new law, rather
the definition of a secondary quantityM as a function of the
primary quantities~f and~a. To determine the components of
M we have to return to the law that relates~f with~a. In rectan-
gular coordinates the vector equation, (V.2), decomposes into
three equations:

fi = mi
d
dy

ui√
1−u2/c2

, i = x, y, z. (VIII.2)

Carrying out the indicated derivations gives:

fi = mr

(
ai√

1−u2/c2
+

uui/c2

(1−u2/c2)3/2

du
dt

)
. (VIII.3)

Taking the instantaneous velocity parallel to theX axis, so
thatux = u, uy = uz = 0, results in:

fx =

[
1√

1−u2/c2
+

u2/c2
√

(1−u2/c2)3

]
ax =

ax

(1−u2/c2)3/2
;

fy =
ay

(1−u2/c2)1/2
;

fz =
az

(1−u2/c2)1/2
. (VIII.4)

For those not distinguishing laws and definitions, mass is a
quantity defined by the identity:

mass≡ force
acceleration

,

and from that, for them, it ceases to be mass as an intrinsic
property of a body, and they distinguish between longitudinal
and transverse mass, which depend on external circumstances,
namely the angle between the force and velocity.

The componentsMi j are defined by

fi = ∑
j

Mi j a j , (VIII.5)

i.e.,

M =




mr
(1−u2/c2)3/2 0 0

0 mr
(1−u2/c2)1/2 0

0 0 mr
(1−u2/c2)1/2


 . (VIII.6)

Obviously, this is a symmetric tensor, for which one princi-
ple axis is in the direction of the instantaneous velocity.

Secondary quantities are introduced into a theory for rea-
sons of convenience. Longitudinal and transverse mass sim-
plify nothing, in fact they constitute gratuitous complication.

IX. MOTION IN A FORCE FIELD

Relativists attribute validity toPLANCK ’s equation

~f dt = d
mr~u√

1−u2/c2
(IX.1)

and deduce from it that the mass of a body varies with the
velocity according to:

m=
mr√

1−u2/c2
. (IX.2)

In the theory we have developed, Eq. (IX.1) is only applica-
ble when the work realized by effect of the force~f is invested
in kinetic energy, without varying internal or potential energy.
It is of interest, then, to investigate what would be the equa-
tion of motion in the new dynamics when the body finds itself
in a force field.

To resolve this question, we base our considerations on the
principle of conservation of energy, stated thus:a body that
neither adsorbs nor emits energy moving freely in a force field
does so, such that the sum of kinetic and potential energy is a
constant.That is:

d(T +Ep) = 0. (IX.3)

From this expression we deduce immediately, that if internal
energy is constant, then the mass of a solid body is given by:

m= mm+(U +T +Ep)/c2 = mr +(T +Ep)/c2 = const.,
(IX.4)

which means, that in contrast to the relativistic formula, Eq.
(IX.2), the mass of a body moving freely in a force field with-
out adsorbing or emitting internal energy, isindependent of
the velocity.

To Apply Eq. (IX.3), it is necessary to investigate the value
of dT as a function of velocity and ofdEp as a function of
coordinates. InEINSTEIN’s dynamics, as well as the new ver-
sion, kinetic energy of a body with massm, and velocityu,
equals:

T =
mrc2

√
1−u2/c2

−mrc
2, (IX.5)

resulting in:

dT = mr
~u ·d~u

(1−u2/c2)3/2
. (IX.6)

To find an expression fordEp requires knowledge of the na-
ture of force fields, the most important being electrical, gravi-
tational and magnetic.

A. Electric field.

In an electric field, ifΦ is the potential, the potential energy
of a charge equals:

Ep = QΦ, (IX.7)
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and as a consequence:

d Ep = QdΦ. (IX.8)

Substituting (IX.6) and (IX.8) into Eq. (IX.5), and taking it
thatΦ depends solely on spacial coordinates, yields:

Q(∇Φ ·d~x)(1−u2/c2)3/2 =−mr~u·d~u. (IX.9)

As dx= uxdt; dy= uydt; anddz= uzdt, the preceeding equa-
tion takes the vector form:

−Q(1−u2/c2)3/2∇Φ ·~u = mr
d~u
dt
·~u. (IX.10)

From the equation of classical dynamics:

~f = mr
d~u
dt

, (IX.11)

on the other hand, one obtains:

−Q∇Φ ·~u = mr
d~u
dt
·~u. (IX.12)

Comparing this equation with (IX.10), one sees that in the
new dynamics, force exercised by a field is not given by the
product of the gradient of the potential and charge, rather by:

~f = Q(1−u2/c2)3/2∇Φ. (IX.13)

As a consequence, the fundamental equation in the new dy-
namics, for a body moving freely in an electric field, is:

−Q(1−u2/c2)3/2∇Φ = mr
d~u
dt

. (IX.14)

If one lets:

~f ≡ ~f0(1−u2/c2)3/2, (IX.15)

Eq. (IX.10) takes the same form as in classical dynamics,
namely:

~f = mr
d~u
dt

. (IX.16)

B. Gravitational field

If V is the gravitational potential, potential energy equals:

Ep = mrV. (IX.17)

Substituting, then,m for Q andV for Φ into Eq. (IX.14) gives:

−(1−u2/c2)3/2∇V =
d~u
dt

. (IX.18)

and one sees that in the new dynamics, force exercised by a
gravity field equals3:

~f =−mr(1−u2/c2)3/2∇V. (IX.19)

Eqs. (IX.13) and (IX.19) reveal a very interesting peculiar-
ity of the new theory of dynamics.Whatever force field affects
a moving object diminishes as velocity increases until it van-
ishes at the speed of light.As a consequence, no body can
obtain the velocityu = c. Both velocities are related implic-
itly through the equation:

~f = ~f0(1−u2/c2)3/2. (IX.20)

The following considerations serve to make the difference
between force at rest and force in motion manifest.

The weight of a body is the force that must be applied to
keep it at rest in a gravity field. It has, therefore, the same
value but of opposite sign to static force, Eq. (IX.19):

~w =−~f0 = mr∇V. (IX.21)

On the other hand, the force which gravity exercises on the
same body when passing the same location with velocityu, is
lower, as it has the value:

~f =−~w(1−u2/c2)3/2. (IX.22)

In order that an electron shall acquire the potential ofΦ
volts, it must be vested with a quantity of energy equal toeΦ,
with which its mass must be converted intom= mr +eΦ/c2.
The velocity acquired by an electron on passage from the po-
tential Φ to zero, is determined by the expressionT = eΦ,
such that:

mrc2
√

1−u2/c2
−mec

2 = eΦ, (IX.23)

from which one deduces that this velocity satisfies:

u2

c2 =
2+eΦ/c2

(1+eΦ/mec2)
eΦ

mec2 . (IX.24)

As a check of this result, consider, that when the energyeΦ is
much less thatmec2, the last expression becomes:

u2 = 2eΦ/me, (IX.25)

which coincides with the result from classical dynamics:

1
2

mru
2 = eΦ. (IX.26)

3 Eqs. (IX.14) and (IX.18) were obtained starting from conservation of en-
ergy and the value of kinetic energy given by Eq. (IX.5). InEINSTEIN’s
theory the equations of motion would be:

−Q∇Φ =
d
dt

mr~u√
1−u2/c2

; −∇V =
d
dt

mr~u√
1−u2/c2

,

and, by being incompatible with those found in the new theory, implies that
EINSTEIN’s theory must be in contradiction with the Principle of Conser-
vation of Energy.
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Take note that in Eq. (IX.23) the rest massme of an elec-
tron, rather than total massm= me+eΦ/c2, plays a role. The
latter mass represents the inertia of an electron, that is, the
resistance it offers to any force tending to divert it from its
trajectory.

C. Magnetic fields

In a magnetic field for which the magnetic induction equals
~B, a chargeQ is subject to a force:

~f = Q(~u×~B), (IX.27)

which, being normal to the trajectory, does no work and does
not alter the tangential velocity. As a consequence, its po-
tential energy is null and it leaves kinetic energy unchanged.
Lacking potential energy, therefore, the equations obtained
above do not apply, in their place the following is valid:

Q(~u×~B) = m
d~u
dt

, (IX.28)

where

m= mr +T/c2 = mr/
√

1−u2/c2, (IX.29)

is the total mass, which remains constant.
If the field is homogeneous, acceleration, which is normal

to the trajectory, would be constant, so that the motion is cir-
cular with radius satisfying:

f = mu2/r, (IX.30)

or, if ~B is perpendicular to~u:

r = mu/QB. (IX.31)

This formula has been confirmed in modern accelerators,
a fact which is considered by Relativists as confirmation of
EINSTEIN’s theory. But as Eq. (IX.31) coincides with that
from his theory, it can not distinguish between the two.

X. THE MASS OF POTENTIAL ENERGY

If the reader consults works on Relativity in order to learn
whether to attribute inertia to potential energy inEINSTEIN’s
theory, he will wind up perplexed, as they just pass over this
question in silence. Moreover, since in applications this mass
is not taken into account, they tacitly consider that it does not
exist. In fact, this being so, they thereby actually reject the
principles of conservation of mass and energy, as we shall ar-
gue below.

Suppose that a body is at rest where its potential energy is
Ep. Under these circumstances, if potential energy reduces in-
ertia, a body’s mass is reduced to its rest massmr . Taking it
that motion is unrestricted, potential energyEp is transformed
into a quantity equivalent to kinetic energy, for which the
total mass of the body experiences the augmentationEp/c2,

without having reduced mass or energy of other bodies. This
would be, then, an increase of the mass of the universe, and a
violation of the Principle of Mass Conservation.

Recently BRILLOUIN (1964) recognized the need to at-
tribute inertia to potential energy, and as a consequence, to
modify the foundation of relativistic mechanics. He remarked
that the difficulty here, is to know where to locate such mass,
since to have potential energy it is necessary to have at least
two bodies, and that fact presents the issue of distribution of
potential mass between them.

BRILLOUIN considered two charged bodies and concluded
that potential energy must be attributed to their electrostatic
interaction and distributed equally between them. This claim,
however, is not acceptable, as according to an easy demonstra-
tion, whatever the interaction engendering equal and opposite
forces, potential energy must be distributed in inverse propor-
tion to their respective proper masses.

Suppose both bodies are in contact and at rest. To separate
them one has to apply to each forces that, by hypothesis, are
always equal and opposite. In so far as all work realized by
both forces is converted into potential energy, it suffices after
separation, that both bodies return to being at rest. Because it
is not important how long the separation took to accomplish,
we may suppose that it transpired with infinitesimal velocity,
in the manner of reversible thermodynamic transformations.
Under the conditionu→ 0, and with an eye to§9, clearly a
classical equation of motion pertains. In particular, the center
of mass remains at rest, so that taking the origin of coordinates
at that point, we can write:

mmdx+m′
mdx′ = 0. (X.1)

The potential energy acquired by each body would be equal
to the work realized through the force~f0 exercised on both
bodies if they were at rest. Thus, by effect of Eq. (X.1), one
has:

dEp = f0dx; dE′p =− f0dx′ = f0
mm

m′
m

dx. (X.2)

As a consequence:

dEp =
m′

m

mm
dE′p, (X.3)

and, in so far as initiallyEp = E′p = 0,

Ep

E′p
=

m′
m

mm
, (X.4)

such thatpotential energy due to the mutual interaction of two
bodies is apportioned in inverse proportion to their proper
masses.

Given the miniscule masses of elementary particle, in com-
parison to bodies that engender electric and gravitational
forces, it is practically so, that all potential energy is localized
in the latter.
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XI. INERTIAL AND GRAVITATIONAL MASS

In accord with ideas developed in the theory of dimensional
analysis of physical quantities, (PALACIOS, 1956), it is nec-
essary to distinguish between inertial mass and gravitational
mass. The first is what is defined in§1, while the second is
that responsible for the force acting when a body is in a grav-
itational field.

From experiments byNEWTON andEÖTVÖS, results show,
that when a body is held at rest, there is a proportionality be-
tween inertial and gravitational mass:

mg = G1/2m0. (XI.1)

As a consequence,NEWTON’s Law of Gravitation can be ex-
pressed as a function of gravitational masses:

f =
Mgmg

r2 , (XI.2)

or as function of inertial masses:

f0 = G
M0m0

r2 . (XI.3)

The issue now is to investigate what happens with grav-
itational mass when the body is in motion. Following re-
sults from§9, the force exercised over the body by gravitation
equals:

f = f0(1−u2/c2)3/2, (XI.4)

where

f0 =−m0∇V, (XI.5)

is the force at rest, or that which is applied to a body to keep
it at rest, i.e., the force measured by a dynamometer.

In view of Eq. (XI.3), Eq. (XI.4) can be written:

f = G
M0m0

r2 (1−u2/c2)3/2. (XI.6)

If the field is constant, that is, if the bodyM is held at rest,
thenMg = G1/2Mg, and Eq. (XI.2) converts to:

f = G1/2 Mgmg

r2 (1−u2/c2)3/2. (XI.7)

Comparing this with Eq. (XI.2), one sees that:

mg = G1/2(1−u2/c2)3/2m0; (XI.8)

and, therefore, it has been shown that:the relationship be-
tween inertial and gravitational mass is not constant but de-
pends on the velocity.

Measurement results of gravitational mass at increasing ve-
locity diminishes such that at the speed of light they vanish al-
together.In particular this means, that light itself has inertial
mass but no gravitational mass.

The theory of relativity, however, is based explicitly on the
identity of inertial and gravitational mass; thus, the implica-
tions of this are that this theory must be in principle false.

XII. CONSERVATION OF MOMENTUM PARTICLE COLLISIONS

In NEWTON’s dynamics one takes it that the mass of a body
is a constant characteristic of a body, which satisfies the equa-
tion:

~f dt = md~u. (XII.1)

Moreover, the principle of action-and-reaction holds, accord-
ing to which if one body exercises a forcef over another, the
second exercises the force− f on the first. This means that
mutual forces are parallel, equal and opposite (although they
can not be on the same line), such that their sum is null. As a
consequence, a system of bodies subject to mutual interaction
complies with the equation:

∑
i

mi d~ui = 0; or, ∑
i

mi~ui = const. (XII.2)

If, to abbreviate terminology and notation, one introduces a
vector calledmomentum, defined by:

~pi ≡mi~ui , (XII.3)

then Eq. (XII.2) can be written as:

∑
i

~pi = const., (XII.4)

which is the expression of the principle ofConservation of
Momentum.

These equations are valid whenever the effect of mutual
forces is simply to change velocity; but, they can not serve
for study of particle collisions.

Study of the minutia of collisions is intractable because, in
general, of extremely complex phenomena including: elastic
and inelastic deformations, conversion of energy to thermal
energy, excited chemical reactions and the like. But, what is of
practical interest, is not really the vicissitudes of the collision
itself, as much as its final outcome. To investigate how bodies
move the instant after collisions, one introduces the principle
of conservation of momentum of thecenter of mass,which is
an extention of the principle of inertia, and which is valid in all
systems exempt from exterior influences, whatever transpires
during collisions.

As, by definition, the coordinates of the center of mass are:

rd = ∑i mir i

∑i mi
, d = x, y, z, (XII.5)

the just mentioned principle is expressed as:

∑
i

mi~ui = const., (XII.6)

which shows that in collisions, Eqs. (XII.2) and (XII.4) re-
main valid.

In the new dynamics, in so far as mass is not constant, it
is necessary to investigate the means of defining the center
of mass. As the effects of collisions must be determined by
velocities at the onset of collisions, plausibly any mass should
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be that of ‘mass in motion’, i.e., rest massmr augmented with
kinetic energyT, in other words:

m= mr +T/c2 = mr/
√

1−u2/c2. (XII.7)

Thus, in the new theory, just as inEINSTEIN’s, momentum
must be defined by:

~p≡ mr~u√
1−u2/c2

. (XII.8)

Again, we consider three important cases.

A. Elastic collisions

Consider a body of massmr moving with velocityu0 collid-
ing with a second body of massM, with velocityv0. Further,
suppose they are spherical and moving on the line joining their
centers, where our purpose is to determine their velocities,u
andv, after a collision.

Elastic collision means that both bodies conserve internal
energy. Moreover, immediately preceeding and following the
collision, the potential energy is null. Thus, only kinetic en-
ergy is involved, and the principles of conservation of energy
and momentum are expressed as:

mr√
1− u2

0
c2

+
Mr√
1− v2

0
c2

=
mr√
1− u2

c2

+
Mr√
1− v2

c2

;

mru0√
1− u2

0
c2

+
Mrv0√
1− v2

0
c2

=
mru√
1− u2

c2

+
Mrv√
1− v2

c2

,(XII.9)

or, as well:

mr

Mr


 1√

1− u0
c2

− 1√
1− u2

c2


 =

1√
1− v2

c2

− 1√
1− v2

0
c2

;

(XII.10)

mr

Mr


 u0√

1− u0
c2

− u0√
1− u2

c2


 =

v√
1− v2

c2

− v0√
1− v2

0
c2

.

(XII.11)
Although these equations solve the problem, it is not easy

to isolateu andv. However, for many practical applications in
physics, the situation consists of a projectile,mr , vastly lighter
than a target,Mr . Under such assumptions,v' v0 and there is
significant simplification. Dividing Eq. (XII.10) by (XII.11)
gives:

√
1− u2

c2 −
√

1− u2
0

c2

u0

√
1− u2

c2 −u
√

1− u2
0

c2

=

√
1− v2

0
c2 −

√
1− v2

c2

v
√

1− v2
0

c2 −v0

√
1− v2

c2

.

(XII.12)
In the limit, whenv→ v0, the second term becomes inde-

terminate in form, but can easily be seen to equalv0/c2, so

that the value ofu satisfies:

(1−u0v0/c2)
√

1−u2/c2 = (1−uv0/c2)
√

1−u2
0/c2.

(XII.13)
Squaring and simplifying gives a second order equation inu,
which, besides the trivial solutionu = u0, also yields:

u =
2v0−u0(1+v2

0/c2)
1+ v0

c2 (v0−2uo)
. (XII.14)

When the target is fixed,v0 = 0, and thenu =−u0.
To justify the hypotheses underlying the preceeding cal-

culation, which can appear exaggeratedly artificial, we shall
obtain the same result applying our version of theCovari-
ance Principle, according to which, one can consider that
all physics equations transform covariantly underLORENTZ-
EINSTEIN transformations, even as expressed in new, well
chosen, variables (or ficticious quantitates).

We start supposing that the target is fixed in a system,S, at
absolute rest and, that it and the projectile are perfectly elas-
tic. Just as they make contact, both bodies begin to deform,
more or less according to their modulus of elasticity. The de-
formation continues until all the projectile’s kinetic energy is
transformed into energy of elastic deformation. At this point,
the process is reversed, so that when the projectile and target
have recovered their original form, that is, when the cease to
have contact, all energy of elastic deformation is reconverted
back into kinetic energy, and as the target is fixed, the projec-
tile must regain its original velocity, but with opposite sign.
That is:

u =−u0 if vo = 0; mr/M ' 0. (XII.15)

We now investigate what happens when the target, instead
of being fixed, moves with velocityv0 6= 0. If one takes a
reference frame moving with this same velocityv0, and em-
ploys within it aberrated rulers and clocks artfully so as to
satisfy LORENTZ-EINSTEIN transformations, then measure-
ments will turn out incorrect, but Eqs. (XII.15) will be covari-
ant with respect to said transformations, and they will yield:

u′ =−u′0; if v ′ = 0. (XII.16)

This solution, which relativists take as valid, is notably
false, but is correct inS, which is what is obtained with no
more than using formulas for a change of variables fromS to
S′. To do so, we must call on just the relativistic formula for
the addition of velocities:

u =
u′+v

1+u′v/c2 , (XII.17)

which leads directly to:

u0 =
u′0 +v

1+v0u′0/c2 ; u =
−u′0 +v0

1+v0u′0/c2 , (XII.18)

and now by just eliminatingu′0 between them one obtains Eq.
(XII.14).
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Whenu0 = c, which is the case for the photon, the result
is u = −c, such thatreflected light in a moving frame propa-
gates with the same velocity as if the mirror were at rest.This
deduction is in accord with experimental results obtained by
M ICHELSON (1913).

B. Inelastic collisions

Consider two bodies moving along the same line with ve-
locities u1 andu2, which collide and fuse together. We now
seek to investigate the proper massMm, the velocityu and the
internal energyU , of the combined body resulting from the
collision. We suppose that initially both bodies had no inter-
nal energy, and that there was no annihilation of matter, nor
energy interchange with exterior bodies. This is the case, for
example, when a neutron is captured by a nucleus.

In order to compact notation, let:

α(·) =
√

1−u2
(·)/c2; (XII.19)

conservation of total mass, then, is expressed as:

mm1

α1
+

mm2

α2
=

Mr

α
, (XII.20)

and conservation of momentum:

mm1u1

α1
+

mm2u2

α2
=

Mru
α

. (XII.21)

Multiplying Eq. (XII.20) by u and subtracting from Eq.
(XII.21) gives:

mm1

α1
(u1−u)+

mm2

α2
(u2−u) = 0, (XII.22)

which gives:

u =
mm1u1α2 +mm2u2α1

mm1α2 +mm2α1
. (XII.23)

Knowing the value ofu, permits evaluating Eq. (XII.20) for
Mr :

Mr = α(mm1/α1 +mm2/α2). (XII.24)

If, as relativists claim, the principles of conservation of
mass and energy are unified into a single principle, we would
not be able to calculate the values of the proper massMm and
internal energyU after a collision. But, calling on the results
of §3, we can consider also the principle of conservation of
proper mass:

Mm = mm1 +mm2. (XII.25)

As: Mr = Mm+U/c2, Eq. (XII.24) gives:

U
c2 = mm1

(
α
α1
−1

)
+mm2

(
α
α1
−1

)
, (XII.26)

which is the solution to our problem.

A case of particular interest is one in which a body collides
with a much larger target. Ifmm1 << mm2 these equations
give:

u' u2; Mr 'mm2

(
α2

α1

mm1

mm2

+1

)
, (XII.27)

U
c2 '

(
α2

α1
−1

)
. (XII.28)

Since kinetic energy of the first body equals:

T1 'mm1c2
(

1
α1
−1

)
, (XII.29)

Eq. (XII.28) takes the form:

U ' (T1 +mm1c2)α2−mm1c2, (XII.30)

which gives us the portion of kinetic energy stored in the form
of internal energy. If the target remains at rest, thenu2 = 0 and
U ' T1. All the projectile’s energy is converted into internal
energy.

C. Collision of antiparticles

Another case of particular interest is that in which a parti-
cle collides with its antiparticle and all energy is converted to
radiation. In this case the particles might have internal energy,
of spin or charge say, which requires replacing their rest mass
with

mr = mm+U/c2. (XII.31)

If W is the radiative energy liberated in the collision, con-
servation of total mass implies:

mr

(
1

α1
+

1
α2

)
= W/c2, (XII.32)

and if this should be a single photon, the energy equals:

hν = W = mrc
2
(

1
α1

+
1

α2

)
. (XII.33)

Conservation of momentum, however, requires:

mr

(
u1

α1
+

u2

α2

)
=

W
c

, (XII.34)

or

W = cmr

(
u1

α1
+

u2

α2

)
. (XII.35)

Comparison of Eqs. (XII.33) and (XII.35) gives:

(c−u1)/α1 +(c−u2)/α2 = 0, (XII.36)
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which can not be satisfied because both terms are always pos-
itive. Thus, necessarily at least two photons result from an-
nihilation so that the principle of mass conservation gives the
equation:

mr

(
1

α1
+

1
α2

)
=

h
c2 (ν1 +ν2). (XII.37)

Conservation of momentum is expressed here by means of the
vectorial equation:

mr

(
~u1

α1
+

~u2

α2

)
=

h
c2 (ν1~c1 +ν2~c2). (XII.38)

Taking coordinate axes in the plane determined by the ve-
locities~u1 and~u2, converts Eq. (XII.38) to:

mr

(
~u1x

α1
+

~u2x

α2

)
=

h
c2 (ν1cosθ1 +ν1cosθ2);

mr

(
~u1y

α1
+

~u2y

α2

)
=

h
c2 (ν1sinθ1 +ν2sinθ2),(XII.39)

and one has three equations in the unknownsν1, ν2, θ1 andθ2.
Thus, one of the photon’s directions remains undetermined. In
any case, however, the total radiation energy is given by Eq.
(XII.35).

XIII. PLANCK’S EQUATION IS NOT COVARIANT.
TRANSFORMATION OF FORCE

NEWTON’s dynamics is based on the equation:

~f = m
d~u
dt

, (XIII.1)

and, being subject to composition of vector velocities, one
uses the transformation:

~u =~u′+~v; (XIII.2)

so that:

d~u
dt

=
d~u′

dt
. (XIII.3)

Moreover, mass is unaltered and one uses the same units in
the frameS′ as inS, that is:

m= m′; ~f = ~f ′; t = t ′, (XIII.4)

so that Eq. (XIII.1) converts to:

~f ′ = m′ d~u′

dt′
, (XIII.5)

which means that this equation is covariant under Galilean
transformations, thereforeNEWTON’s dynamics may be clas-
sified asrelativistic.

We shall see, paradoxically, thatEINSTEIN’s dynamics is
in this senseantirelativistic. His dynamics takes as the funda-
mental equation:

~f = mr
d
dt

~u√
1−u2/c2

, (XIII.6)

and relativists claim that it is covariant underLORENTZ trans-
formations, such that it in the frameS′ it becomes:

~f ′ = mr
d

dt′
~u′√

1−u′2/c2
. (XIII.7)

To examine covariance of the vector equation, (XIII.6), we
start by considering its projection on theX axis:

fx = mr
d
dt

ux√
1−u2/c2

. (XIII.8)

Covariance of this equation requires:

f ′x = m′
r

d
dt′

u′x√
1−u′2/c2

. (XIII.9)

Let us see, however, what the right side of Eq. (XIII.8) is
converted into in fact underLORENTZ transformations. Such
transformations introduce local timet ′ which is a ficticious
time defined by the equation:

t = (t ′+vx′/c2)/α, (XIII.10)

from which one deduces:

dt
dt′

=
1
α

(1+vx′/c2). (XIII.11)

Thus, given an arbitrary function,ϕ(t), it follows that:

dϕ
dt

=
dϕ
dt′

dt′

dt
=

α
1+vu′/c2

dϕ
dt′

. (XIII.12)

On the other hand, fromLORENTZ-EINSTEIN transforma-
tion formulas, one deduces:

ux√
1−u2/c2

=
u′x +v

α
√

1+vu′/c2
, (XIII.13)

and by virtue of Eq. (XIII.12),

d
dt

ux√
1− u2

c2

=
1

1+ vu′
c2


 d

dt′
u′x√

1− u′2
c2

+v
d

dt′
1√

1+ u′2
c2


 .

(XIII.14)
To determine the transformation of rest mass, we return to

Eq. (VI.17):

< mr >= α < m′
r > between quantitites. (XIII.15)

To go from an equation between quantities to one between
measurements, one must specify the units used in systemS′.
In EINSTEIN’s theory, it is tacitly taken that one employs a
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kilogram that has been calibrated against a standard inSand
then transfered toS′. To transport this kilogram it is necessary
to invest energy with its corresponding change of mass, such
that, by virtue of Eq. (VI.17), one has:

1kg. in S= αkg. inS′, (XIII.16)

which means that a moving kilogram is less heavy than one at
rest.

Applying the Metric Principle, one has:

mr =
< mr >

1kg. in S
; m′

r =
< m′

r >

1kg. in S′
, (XIII.17)

and with Eqs. (VI.17) and (VI.21), results in:

mr = m′
r between measurements. (XIII.18)

As one sees, the quantities are different, but the measurements
are equal because whatever alterations occur to the mass of a
body, also occur to the standard kilogram.

By multiplying Eq. (XIII.14) by Eq. (XIII.18) we have on
account of Eq. (XIII.9), the result:

mr
d
dt

ux√
1−u2/c2

=
1

1+vu′x/c2

(
f ′x +m′

rv
d

dt′
1√

1−u′2/c2

)
.

(XIII.19)
The second term of this expression can be simplified. To do

so, expand the derivative:

d
dt′

1√
1−u′2/c2

=
1

2c2(1−u′2/c2)3/2

du′2

dt′
, (XIII.20)

and form the vectorial product

~f ′ ·~u′ = m′
r

(
~u′ · d(~u′/α′)

dt′

)
= m′

ru
′2 d

dt′
1
α′

+
m′

r

2α′
du′2

dt′
,

(XIII.21)
whereα′ =

√
1−u′2/c2.

Eliminatingdu′2/dt′ in Eq. (XIII.21) using Eq. (XIII.20),
one obtains

d
dt′

1
α′

=
1

m′
rc2

~f ′ ·~u′, (XIII.22)

with which, Eq. (XIII.19) becomes

mr
d

dt′
ux√

1−u2/c2
=

1
1+vu′2/c2

(
f ′x +

v
c2

~f ′ ·~u′
)

.

(XIII.23)
For the other components, proceeding in an analogous way,
the results are

fy = mr
d
dt

uy√
1−u2/c2

=
α

1+vu′x/c2 f ′y;

fz = mr
d
dt

uz√
1−u2/c2

=
α

1+vu′x/c2 f ′z. (XIII.24)

These formulas reveal, that in order to conserve covariance
of the fundamental equation ofEINSTEIN’s dynamics, it is
necessary to introduce a new vector~f ′ which, with an eye to
its dimensional formula, can be called a force, and which is
defined by the identities:

fx =
1

1−vu′/c2

(
f ′x +

( v
c2

~f ′ ·~u
))

;

fy =
α

1−vu′/c2 f ′y; fz =
α

1−vu′/c2 f ′z. (XIII.25)

According to these equations, measurement of thereal
force ~f and measurement of thefictitious force ~f ′, are dif-
ferent. Since the ratiosfx/ f , fy/ f , andfz/ f do not depend
solely onv, the difference can not be attributed to use of dis-
tinct units. Consequently, the force~f ′, defined by the identi-
ties Eqs. (XIII.25), has nothing to do with the force measured
with a dynamometer, and shows thatcovariance of the funda-
mental law of relativistic dynamics is obtained introducing a
force which is nothing but a mathematical fiction.Thus, we
have demonstrated, one more time, that covariance is not a
law of nature.

XIV. A CRITIQUE OF EINSTEIN’S REASONING

To develop a new dynamics we have taken a different route
than that followed in relativity texts. Nonetheless, Relativists
can not take objection to our reasoning, because we have
based our arguments on a fact that they expressly accept: i.e.,
to total energy there corresponds a mass given by:W/c2. In
this way we have shown, that when there is no potential en-
ergy, the following law governs motion:

~f =
d
dt

mr~u√
1−u2c2

, (XIV.1)

from which it follows, that between a mass at rest and one in
motion, there exists the relationship:

m=
mr√

1−u2/c2
, (XIV.2)

which is valid only when the velocityu results from forces
directly contacting the body and providing the necessary en-
ergy. Except for special cases, however, the preceeding for-
mulas generally are inapplicable, and one must take recourse
to the new dynamics. If, for example, the body moves unre-
strained in a force field, it must exhibit variable velocity; but,
if it has absorbed or emitted no energy, then its mass should
have remained constant. In other words, it is not velocity, but
energy that posses mass.

Our theory is an obvious contradiction to the theory of rel-
ativity, in so far as it implies acceptance of Eqs. (XIV.1) and
(XIV.2), wherever there are forces changing the velocity. Let
us proceed now, to examine the reasoning used by Relativists,
in particular that ofEINSTEIN.

To deduce the fundamental equation of relativistic dynam-
ics, consider along withEINSTEIN 1905, §10) an electron
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that at timet = 0 is at the origin of a system of coordinates
S, moving with velocityu along theX axis. Clearly this elec-
tron remains at rest with respect to a reference system moving
with the same velocity. Under these conditions,EINSTEIN ac-
cepts thatNEWTON’s Law is valid in reference systemS′, and
writes:

~f ′ = mr
d2~x′

dt2
. (XIV.3)

Suppose further that a force arises from an electromagnetic
field. For small values oft, the velocity will differ but little
from u, and we may take it that this electron is at rest in S′, so
that, seen from this reference system, it would be true that:

e~E′ = mr
d2~x′

dt2
, (XIV.4)

wheree is the electron’s charge, taken to be inalterable.
For acceleration he used the relativistic transformation for-

mulas. As at the instantt = 0, one has~u′ = 0, this gives:

d2x′

dt′2
=

1
α3

d2x
dt2

;

d2y′

dt′2
=

1
α2

d2y
dt2

;

d2z′

dt′2
=

1
α2

d2z
dt2

; (XIV.5)

whereα =
√

1−v2/c2 is the contraction factor due to the
velocity v' u, which can be taken constant during very short
intervals.

For the intensity of the electric field,EINSTEIN made use
of the formulas:

E′x = Ex; E′y =
1
α

(Ey−uBz); E′z =
1
α

(Ez+uBz). (XIV.6)

Substituting Eqs. (XIV.5) and (XIV.6) into (XIV.3), one
obtains:

eEx =
mr

α3

d2x
dt2

;

e(Ey−uBz) =
mr

α
d2y
dt2

;

e(Ez+uBy) =
mr

α
d2z
dt2

. (XIV.7)

From these equations, which must be seen as valid in the
systemS if the reasoning behind them is correct,EINSTEIN

drew no conclusions. However, ignoring Eqs. (XIV.6) and
(XIV.7), and substituting (XIV.5) directly into (XIV.4), gives:

eE′x =
mr

α3

d2x
dt2

;

eE′y =
mr

α2

d2y
dt2

;

eE′z =
mr

α2

d2z
dt2

. (XIV.8)

Continuing,EINSTEIN stated: “The left sides constitute the
components of ponderomotive force acting on the electron,
as would be observed from a system moving with the same
velocity v = u, at the considered instant (a force which, for
example, may be measured with a spring dynamometer in this
system).” With this argument he obtained the final equations:

fx =
mr

α3

d2x
dt2

; fy =
mr

α2

d2y
dt2

; fz =
mr

α2

d2z
dt2

; (XIV.9)

and drew the conclusion that the longitudinal and transversal
masses equal, respectively:

ml =
mr

α3 =
mr

(1−u2/c2)3/2
; mt =

mr

α2 =
mr

(1−u2/c2)
.

(XIV.10)
As we have said, all relativists, in particularEINSTEIN him-

self, are in agreement with Eq. (XIV.9), which may be sub-
stituted for Planck’ S EQ. (XIII.1) , and from which one may
deduce, following the example of Eqs. (VIII.4):

ml =
mr

(1−u2/c2)3/2
; mt =

mr

(1−u2/c2)1/2
, (XIV.11)

which coincides with those given byLORENTZ, but not with
those ofEINSTEIN, as the values ofmt differ. This alone suf-
fices to callEINSTEIN’s reasoning into doubt. But, moreover,
this also reveals objections that, to my judgment, totally inval-
idate his reasoning.

EINSTEIN’s argumentation is unacceptable because it con-
siders that acceleration transforms according to the usual rel-
ativistic formulas, which, as we have repeatedly seen, must
be rejected because they presuppose the use of aberrant meter
sticks and inappropriate clocks. On the other hand, given that
MAXWELL ’s equations must be covariant passing fromS to
S′, which compelled both introduction of the fictitious quan-
tities E′x, E′y andE′z, and acceptance, that in a moving system,
the force acting on an electron is notf , but another,f ′, defined
by Eq. (XIV.4).

The errors we have noted are caused by contradictions. It is
seen directly from Eqs. (XIV.4) and (XIV.6), for example, that
the ficticious forcef ′ has to be different than the real forcef ,
that is observed and measured by the dynamometer. Suppose,
say, there is no magnetic field. Then, as~B = 0, one has:

~f = e~E, (XIV.12)

while from Eqs. (XIV.4) and (XIV.6) one deduces:

fx = eEx; fy =
1
α

eEy; fz =
1
α

eEz; (XIV.13)

and so, as a consequence,~f ′ 6= ~f . In spite of this, to obtain the
final formula, namely Eq. (XIV.9),EINSTEIN takes it, with
perfect logic but with notorious inconsistency, that in reality
there is only one force, i.e., that one which a field actually ex-
ercises over an electron, say. On the other hand, there is no
reason to complicate the argumentation by introducing elec-
tromagnetic fields, as it suffices simply to take it that~f ≡ ~f ′
and substitute Eq. (XIV.5) into (XIV.3) in order to obtain the
final equation, Eq. (XIV.9).
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PLANCK considered the case in which the electron’s motion
is along theX axis. Then, Eqs. (XIV.6) reduce toE′x = E and
~f = e~E, ~f ′ = e~E′, from which one deduces thatf = f ′, that is,
in this particular case, no contradiction arrises. However, this
does not establish the general validity of Eqs. (XIV.10). On
the other hand, let us take it that there is only one force, such
that its measurement asf and f ′ are to be equal, it is, then,
necessary that inS′ one is to use valid meter sticks and clocks
adjustable in such a way that they show universal time. Under
these conditions, the vectorial composition of velocities ob-
tains, and acceleration respects the relativistic formulas, Eqs.
(XIV.5).

Finally, EINSTEIN as well asPLANCK analyzed the mo-
tion of a charge in an electromagnetic field, a case for which,
following our theory, Eq. (XIV.2) is not applicable; then, in
order, thatT + Ep = const., and internal energy be fixed, the
total mass must equal:

m= mm+
1
c2 (U +T +Ep) = const., (XIV.14)

a result independent of the velocity acquired through free mo-
tion in the field.

In short, the poorly posed relativistic Eq. (XIV.1), applica-
ble to contact forces, is a correct consequence ofMAXWELL ’s
equations, as we have seen in§5; but, it is impossible to de-
rive it by means of relativity theory without incurring contra-
dictions.

XV. THE METHOD OF LEWIS AND TOLMAN

The notorious shortcomings in rigor thatEINSTEIN in-
curred while modifying the fundamental law ofNEWTON’s
mechanics, has been, probably, the cause of the fact, that all
authors, with mild variations, follow the methods ofLEWIS

(1909) andTOLMAN (1909), and (1934) to derive formulas
giving the variation of mass with velocity.

These two authors, having based their derivation on the
principle of relativity as applied to elastic shock interactions,
obtain correct results, and therefore are able to infer the funda-
mental law of the new theory as a consequence ofEINSTEIN’s
theory. But careful examination ofTOLMAN ’s text from 1934,
shows that their development is not irreproachable. I quote:

In the first system of coordinate, for conve-
nience the primed systemS′, let the two parti-
cles be moving before collision with the veloci-
ties +u′ and−u′ parallel to thex− axis in such
a way that a head-on encounter can occur. Since
by hypothesis the two particles are perfectly sim-
ilar and elastic, it is evident that they will first be
brought to rest on collision and then rebound un-
der the action of the elastic force developed, mov-
ing back over their original paths with the reverse
velocities−u′ and+u′ of the same magnitude as
before but reversed in direction. In this system
of coordinates the collision is obviously such as
to satisfy the conservation laws of mass and mo-
mentum.

Let us now change to a second system of
coordinatesS moving relative to the first in the
x−direction with velocityV. Using this new sys-
tem of coordinates, let us denote byu1 and u2
the velocities of the two particles before colli-
sion, and allowing for the possibility that mass
may depend on velocity let us denote bym1 and
m2 the masses of the two particles before colli-
sion. Furthermore, let us denote byM the sum
of the masses of the two particles at the instant in
the course of the collision when they have come
to relative rest, and are hence both moving with
velocity+V with respect to out present system of
coordinates,S.

In accordance with the conservation laws.
which must also hold in the new system of co-
ordinates, the total mass and total momentum of
the two particles must be the same before the col-
lision and at the moment of relative rest, so that
we can evidently write:

m1 +m2 = M, (XV.1)

and

m1u1 +m2u2 = MV. (XV.2)

In addition, however, using the [transforma-
tion equations for velocities,] we can write for the
velocitiesu1 andu2, in terms of their values+u′
and−u′ with respect to the original coordinates
S, the expressions:

u1 =
u′+V

1+u′V/c2 and u2 =
−u′+V

1−u′V/c2 . (XV.3)

And by combining these three equations and
solving for the ration of the two masses, we easily
obtain:

m1

m2
=

1+u′V/c2

1−u′V/c2 , (XV.4)

which with the help of
[√

1−u2/c2 =

√
1−V2c2

1−u′xV/c2

√
1−u′2/c2,

]
(XV.5)

gives us

m1

m2
=

√
1−u2

1/c2

√
1−u2

2/c2
. (XV.6)

In accordance with this result the masses of
the two particles, which by hypothesis have the
same value, saym0, when at rest, become in-
versely proportional to

√
1−u2/c2 when moving

with velocityu, so that we may now write

m=
m0√

1−u2/c2
, (XV.7)
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as the desired expression for the massmof a mov-
ing particle in terms of its velocityu and mass at
restm0.4

The route followed byTOLMAN differs fundamentally from
ours. In our theory, the equation which gives mass as a func-
tion of velocity is only valid in the absence of potential energy
and when internal energy is constant. In our case, to deduce
this relation we have applied the formulamw = W/c2 to the
particular case in which the energyW communicated to the
body is converted completely to an increase of kinetic energy.
In our reasoning it is not necessary to invoke the principle of
relativity. On the contrary, since the mass of a body is mini-
mum whenu= 0, it provides a criterion to distinguish a frame
at absolute rest,S, from any other frame at all.

TOLMAN claimed to have deduced Eq. (XV.6) starting
from the principle of relativity and took for granted that it is
valid whatever the disposition of forces producing a change in
velocity.

He took it in his argumentation that the collision under con-
sideration was perfectly symmetric with respect to a moving
plane atx′ = 0, which requires, evidently, that not only the
velocities of the particles are equal, but also their masses, that
is

u′1 =−u′2 = u′; m′
1 = m′

2. (XV.8)

Without exception, and here is the contradiction,TOLMAN

assumes that both particles poses the same mass,mr , when
they remain at rest in systemS′, which is in accord with Eq.
(XV.5). From this, one deduces, that after the collision, the
masses, measured in the units ofS, equal

m1 =
mr√

1−u2
1/c2

; m2 =
mr√

1−u2
2/c2

. (XV.9)

To change from measurements made inS to those made in
S′, one need only keep in mind that

1 kg. in S′

1 kg. in S
=

1√
1−v2/c2

=
1
α

, (XV.10)

to obtain

m′
1

m1
=

m′
2

m2
= α, (XV.11)

that is

m′
1 =

αmr√
1−u2

1/c2
; m′

2 =
αmr√

1−u2
2/c2

, (XV.12)

and since by virtue of Eq. (XV.3),u1 6= u2, it follows

m1 6= m2 (XV.13)

which is the contradiction with Eq. (XV.8).

4 TOLMAN , R. C.Relativity, Thermodynamics and Cosmology,(Dover, New
York, 1987 ) p. 43.

XVI. TRANSFORMATION RULES FOR MASS AND MOMENTUM

In accord with our postulate of covariance, one can con-
sider that all physics equations conserve their form passing
from a system at rest to another inertial systemS′, applying
to each quantity a particular transformation formula, which is
equivalent to saying, that covariance in not a law of nature,
but can be effected by introducing new variables, that can be
called ficticious because they differ from the real observables
and measurements. In the preceeding we have obtained trans-
formation formulas for coordinates, time, velocities, acceler-
ations and forces. Now we shall seek the correspondences of
mass, energy and time.

For mass we start with the equation

m=
mr√

1−u2/c2
, (XVI.1)

and we seek a new variable,m′, such that

m′ =
m′

r√
1−u′2/c2

. (XVI.2)

The measurement of rest mass, according to§13, is invari-
ant

mr = m′
r . (XVI.3)

The formula giving the contraction factor under transforma-
tion is:

√
1−u2/c2 =

√
1−v2/c2

1+vu′x/c2

√
1−u′2/c2. (XVI.4)

Substituting Eqs. (XVI.3) and (XVI.4) into (XVI.1), gives

m=
m′

r

α
√

1−u′2/c2
(1+vu′x/c2)m′, (XVI.5)

thus, by virtue of Eq. ( XVI.2):

m=
1
α

(1+vu′x/c2)m′, (XVI.6)

which is the sought formula. One obtains the inverse formula,
as always, by permuting the unprimed with primed symbols
and changing the sign ofv:

m′ =
1
α

(1−vux/c2)m. (XVI.7)

Momentum is a secondary quantity; inEINSTEIN’s dynam-
ics it is defined by the identity:

~p≡ mr~u√
1−u2/c2

, (XVI.8)

which, when projected on theX axis, becomes

px ≡ mrux√
1−u2/c2

. (XVI.9)
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The covariance of this expression is established by intro-
ducing a new variable defined by

p′x ≡
m′

ru
′
x√

1−u′2/c2
. (XVI.10)

While the formulas

mr = m′
r ;

ux√
1−u2/c2

=
u′x +v√

1−u′2/c2
, (XVI.11)

obtained in§13, give:

px =
1+v/u′x

α
m′

ru
′
x√

1−u′2/c2
, (XVI.12)

and requires only comparison with Eq. (XVI.10) to obtain

px =
1
α

(1+v/u′x)p′x. (XVI.13)

Analogously, for the other components, one obtains:

py = p′y; pz = p′z. (XVI.14)

XVII. KINETIC AND TOTAL ENERGY

The kinetic energy of a body in motion is, by definition, the
work which is obtained through application of the engender-
ing force, or what is the same, the heat produced by decel-
eration. Above we have seen, that by virtue of the inertia of
energy, the expression for kinetic energy in the new theory is

T =
mrc2

√
1−u2/c2

−mrc
2. (XVII.1)

This formula is valid in a system at absolute rest. Let us
investigate how it would appear in an inertial system moving
with velocityv.

ConcerningT, it suffices to suppose that one uses a
calorimeter moving with velocity v, for which the body, af-
ter being restrained, still conserves the kinetic energy corre-
sponding to this velocity. That is,

T ′a = T−
(

mrc2
√

1−v2/c2
−mrc

2

)
, (XVII.2)

or, by virtue of Eq. (XVII.1):

T ′a = mrc
2

(
1√

1−u2/c2
− 1√

1−v2/c2

)
, (XVII.3)

where the subscripta indicates that for measurement ofT ′,
one has used appropriate energy units.

The measurementu′ of velocity with respect to systemS′
depends on the meter sticks and clocks that are utilized in this
system; and, one must consider, the following two important
cases:

a) The correct value ofu′ is obtained with corrected meter
sticks and chronometers that indicate universal time. Under
these conditions, velocities comport themselves as vectors, so
that one has:

~u =~v+~u′, (XVII.4)

or:

u2 = u′2 +v2 +2u′vcosθ′, (XVII.5)

where θ′ is the angle between~u′ and~v. In this way, Eq.
(XVII.3) is converted into:

T ′a = mrc
2


 1√

1− u′2+v2+2u′vcosθ′
c2

− 1√
1−v2/c2


 .

(XVII.6)
This expression, which is rigorously correct, indicates that

in the moving reference system the formula:

T ′ =

(
m′

rc
2

√
1−u′2/c2

−m′
rc

2

)
, (XVII.7)

is not valid, all of which shows, one more time, that the con-
cept of inertia for energy is in contradiction with the principle
of relativity.

b) According to relativists, to transform to a moving system
one must utilize theLORENTZ transformations. From them,
in turn, one deduces the following formula to transform the
contraction formula:

√
1−u2/c2 =

α
1+vu′/c2

√
1−u′2/c2, (XVII.8)

such that Eq. (XVII.3) becomes:

T ′a =
m′

rc
2

√
1−v2/c2

(
1+vu′/c2

√
1−u′2/c2

−1

)
. (XVII.9)

This formula, which seems to be acceptable for relativists
because it was obtained usingLORENTZ transformations,
contains nevertheless a crass contradiction with the principle
of relativity, because

u′x = u′ cosθ′, (XVII.10)

the energyT ′c measured with a calorimeter depends on the an-
gle θ′. This means, that for measurements made in a moving
frame, space is not isotropic, because the direction of the ve-
locity is a privileged direction.

From Eq. (XVII.9) one deduces a new method to measure
absolute velocity in a laboratory. It suffices to measureu′ with
clocks synchronized with light signals as if the velocity of
light were the same in all directions and without correcting
these measurements made with the standard meter. In this
way, with energy measured with calorimeters, or its equiva-
lent, Eq (XVII.9) permits calculating~v, as well as its direc-
tion.
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To conceal the failure of the principle of relativity, one must
introduce a new variable,T ′, that makes Eq. (XVII.1) covari-
ant, that is, that transforms it into Eq. (XVII.8). To this end,
we note that, when there is no force field, thetotal energy
W contained in a body and comprised of three parts: kinetic
energyT, internal energyU and that which comes from con-
version of matter into energy:

W = T +U +mmc2 = T +mrc
2, (XVII.11)

or, by virtue of Eq. (XVII.1):

W =
mrc2

√
1−u′2/c2

. (XVII.12)

In order that this expression should be covariant under
LORENTZ transformation, one must introduce a variableW′
defined by

W′ ≡ m′
rc

2
√

1−u′2/c2
. (XVII.13)

Thanks to Eq. (XVII.8), and recalling thatmr = m′
r , Eq.

(XVII.12) is converted to

W =
m′

rc
2

√
1−v2/c2

√
1−u′2/c2

(1+u′xv/c2), (XVII.14)

and comparison with Eq. (XVII.13), gives:

W =
1√

1−v2/c2
(1+vu′/c2)W′, (XVII.15)

which is the relativistic formula for the transformation of total
energy.

From the following two equations

W = T +mrc
2; W′ = T ′+m′

rc
2, (XVII.16)

one deduces, in view of Eq. (XVII.15), the following trans-
formation formula for kinetic energy.

T =
1√

1−v2/c2
(1+vu′/c2)(T ′+m′

rc
2)−m′

rc
2. (XVII.17)

This transformation formula may always be applied, pro-
vided that one utilizes our principle of covariance.
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